Citation: LI Pei, ZHANG Jiaqi, LIU Wei, CHEN Quan, TANG Yujing, JI Xiangling, XUE Yanhu, SUN Guangping. Chain Structure and Properties of Four Commercial Low Density Polyethylene Resins[J]. Chinese Journal of Applied Chemistry, ;2019, 36(11): 1237-1247. doi: 10.11944/j.issn.1000-0518.2019.11.190115 shu

Chain Structure and Properties of Four Commercial Low Density Polyethylene Resins

  • Corresponding author: XUE Yanhu, xueyh@ciac.ac.cn; sungp@jlu.edu.cn SUN Guangping, sungp@jlu.edu.cn
  • Received Date: 17 April 2019
    Revised Date: 10 June 2019
    Accepted Date: 26 June 2019

    Fund Project: the National Natural Science Foundation 21704100Supported by the National Natural Science Foundation(No.20734006, No.50921062, No.21704100)the National Natural Science Foundation 50921062the National Natural Science Foundation 20734006

Figures(9)

  • Four commercial low density polyethylene(LDPE) resins with different melt flow rates were selected and their chain microstructures and the rheological properties were studied by high-temperature gel permeation chromatography(HT-GPC), 13carbon nuclear magnetic resonance spectroscopy(13C NMR), differential scanning calorimetry(DSC) and rheometer. The above resins are divided into two groups, D-1 and Q-1, D-3 and Y-1. Two resins in the same group have similar relative molecular mass. The results of 13C NMR spectroscopy show that the four LDPE resins not only contain short chain branches(SCB), but also have long chain branches(LCB), and the content of SCB is much higher than that of LCB, while the butyl branch in SCB is the highest one. The thermal fractionation(successive self-nucleation/annealing, SSA) results show that every resin contains different crystallizable methylene sequence lengths, i.e., the distribution of SCB in the intramolecular chain exhibits heterogeneity. The effects of molecular mass and its distribution, methylene sequence length and its distribution, branching content and crystallinity on melting behavior, rheological behavior and mechanical properties of the films were investigated. It is found that the low relative molecular mass end in Q-1 and LCB content in Y-1 influence their melt flow rate, the average methylene sequence length determines the melt temperature peaks, and the crystallinity influences the mechanical property of films. Based on the above results, the relationship between structure and property is established.
  • 加载中
    1. [1]

      XIAO Yizhi, YANG Haibin, ZHANG Qixing. Polymerization of Ethylene Catalyzed by TiCl4/Ni(acac)2 Supported Complex Catalysts[J]. Chinese J Appl Chem, 2001,18(7):528-531. doi: 10.3969/j.issn.1000-0518.2001.07.006 

    2. [2]

      Edward S W. Industrial Polymers Handbook[M]. FU Zhifeng, et al. Trans. Beijing: Chemical Industry Press, 2001(in Chinese).

    3. [3]

      Gaucher-miri V, Elkoun S, Séguéla R. On the Plastic Behavior of Homogeneous Ethylene Copolymers Compared with Heterogeneous Copolymers[J]. Polym Eng Sci, 1997,37(10):1672-1683. doi: 10.1002/pen.11815

    4. [4]

      Khonakdar H A, Morsheidan J. Influence of Long-Chain Branching Extent in Polyethylenes on Molecular Weight and Molecular Weight Distribution Predicted via Rheological Analysis[J]. Polym Bull, 2015,72:1217-1231. doi: 10.1007/s00289-015-1334-3

    5. [5]

      Knuuttila H, Lehtinen A, Nummila-Pakarinen A. Advanced Polyethylene Technologies-Controlled Material Properties[J]. Adv Polym Sci, 2004,169:13-28.  

    6. [6]

      Liu J, Chen D, Wu H. Polymerization of α-Olefins Using a Camphyl α-Diimine Nickel Catalyst at Elevated Temperature[J]. Macromolecules, 2014,47(10):3325-3331. doi: 10.1021/ma5004634

    7. [7]

      Randall J C. 13C-NMR of Ethylene-1-olefin Copolymers:Extension to the Short-Chain Branch Distribution in a Low-Density Polyethylene[J]. J Polym Sci Part B-Polym Phys, 1973,11(2):275-287. doi: 10.1002/pol.1973.180110209

    8. [8]

      Galland G B, de Souza R F, Mauler R S. 13C-NMR Determination of the Composition of Linear Low Density Polyethylene Obtained with[η3-methallyl-nickel-diimine] PF6 Complex[J]. Macromolecules, 1999,32(5):1620-1625.  

    9. [9]

      Wang W J, Kharchenko S, Migler K. Triple-Detector GPC Characterization and Processing Behavior of Long-Chain-Branched Polyethylene Prepared by Solution Polymerization with Constrained Geometry Catalyst[J]. Polymer, 2004,45(19):6495-6505. doi: 10.1016/j.polymer.2004.07.035

    10. [10]

      Esfahani M K, Ebrahimi N G, Khoshbakhti E. The Effect of Molecular Structure on Rheological Behavior of Tubular LDPEs[J]. Rheol Acta, 2015,54:159-168. doi: 10.1007/s00397-014-0822-y

    11. [11]

      Xue Y H, Wang Y H, Fan Y D. Microstructure Characterization of Short-Chain Branching Polyethylene with Differential Scanning Calorimetry and Successive Selfnucleation/annealing Thermal Fractionation[J]. Chinese J Polym Sci, 2014,32(6)751757.  

    12. [12]

      Liao H Y, Qi L Y, Tao G L. Dynamic Rheological Behavior of Two LDPE/HDPE Binary Blending Melts[J]. Polym Bull, 2015,7211971205.  

    13. [13]

      Xu J T, Xu X, Feng L. Short Chain Branching Distributions of Metallocene-Based Ethylene Copolymers[J]. Eur Polym J, 2000,36(4):685-693. doi: 10.1016/S0014-3057(99)00128-7

    14. [14]

      Fu Q, Chiu F C, He T. Molecular Heterogeneity of Metallocene Short-Chain Branched Polyethylenes and Their Fractions[J]. Macromol Chem Phys, 2001,202(6):927-932. doi: 10.1002/1521-3935(20010301)202:6<927::AID-MACP927>3.0.CO;2-K

    15. [15]

      Xue Y H, Bo S Q, Ji X L. Calibration Curve Establishment and Fractionation Temperature Selection of Polyethylene for Preparative Temperature Rising Elution Fractionation[J]. Chinese J Polym Sci, 2015,33(7):1000-1008. doi: 10.1007/s10118-015-1648-5

    16. [16]

      Stadler F J, Piel C, Klimke K. Influence of Type and Content of Various Comonomers on Long-Chain Branching of Ethene/α-Olefin Copolymers[J]. Macromolecules, 2006,39(4):1474-1482. doi: 10.1021/ma0514018

    17. [17]

      Stadler F J, Karimkhani V. Correlations Between the Characteristic Rheological Quantities and Molecular Structure of Long-Chain Branched Metallocene Catalyzed Polyethylenes[J]. Macromolecules, 2011,44(13):5401-5413. doi: 10.1021/ma200550c

    18. [18]

      Kazatchkov I B, Bohnet N, Goyal S K. Influence of Molecular Structure on the Rheological and Processing Behavior of Polyethylene Resins[J]. Polym Eng Sci, 1999,39(4):804-815. doi: 10.1002/pen.11468

    19. [19]

      Xue Y H, Bo S Q, Ji X L. Molecular Chain Heterogeneity of a Branched Polyethylene Resin Using Cross-fractionation Techniques[J]. J Polym Res, 2015,22160. doi: 10.1007/s10965-015-0809-0

    20. [20]

      WANG Yanfang, SU Yifan, WANG Suyu. Study on Properties of Speciality LDPE Resin for Shrink Flim[J]. China Synth Resin Plast, 2007,24(5):21-29. doi: 10.3969/j.issn.1002-1396.2007.05.006

    21. [21]

      LI Dongxia, SONG Lei, WANG Hua. Structure and Properties of LDPE Resin for Heat Shrinkable Film[J]. China Synth Resin Plast, 2007,34(4):65-68.  

    22. [22]

      Mirabella F M. High Temperature Elution Peaks in Temperature Rising Elution Fractionation(TREF):The Behavior of High Molecular Weight Species[J]. J Liq Chromatogr Relat Technol, 2014,37(4):516-527. doi: 10.1080/10826076.2012.749494

    23. [23]

      Karoglanian S A, Harrison I R. A Temperature Rising Elution Fractionation Study of Short Chain Branching Behavior in Ultra Low Density Polyethylene[J]. Polym Eng Sci, 1996,36(5):731-736. doi: 10.1002/pen.10460

    24. [24]

      Xue Y H, Fan Y D, Bo S Q. Characterization of the Microstructure of Impact Polypropylene Alloys by Preparative Temperature Rising Elution Fractionation[J]. Eur Polym J, 2011,47(8):1646-1653. doi: 10.1016/j.eurpolymj.2011.05.016

    25. [25]

      Hsieh E T, Tso C C, Byers J D. Intermolecular Structural Homogeneity of Metallocene Polyethylene Copolymers[J]. J Macromol Sci Phys, 1997,36(5):615-628. doi: 10.1080/00222349708220445

    26. [26]

      Xue Y H, Bo S Q, Ji X L. Solvent Gradient Fractionation and Chain Microstructure of Complex Branched Polyethylene Resin[J]. J Polym Res, 2016,23131. doi: 10.1007/s10965-016-1026-1

    27. [27]

      Perez C J, Failla M D, Carella J M. SSA Study of Early Polyethylenes Degradation Stages. Effects of Attack Rate, of Average Branch Length, and of Backbone Polymethylene Sequences Length Distributions[J]. Polym Degrad Stab, 2013,98(1):177-183. doi: 10.1016/j.polymdegradstab.2012.10.012

    28. [28]

      Liu Y G, Bo S Q. Characterization of the Microstructure of Biaxially Oriented Polypropylene Using Preparative Temperature-rising Elution Fractionation[J]. Int J Polym Anal Charact, 2003,8(4):225-243. doi: 10.1080/10236660304880

    29. [29]

      XUE Yanhu, BO Shuqin, JI Xiangling. Parameters Optimization of Successive Self-nucleation/Annealing Thermal Fractionation Experiments for Polyethylene Resin and Comparison with Step Crystallization[J]. Acta Polym Sin, 2015,3:326-330.  

    30. [30]

      Fillon B, Wittmann J C, Lotz B. Self-nucleation and Recrystallization of Isotactic Polypropylene (α-phase) Investigated by Differential Scanning Calorimetry[J]. J Polym Sci Part B:Polym Phys, 1993,31(10):1383-1393. doi: 10.1002/polb.1993.090311013

    31. [31]

      Liu C, Zhang Z, Chen Q. Stability of Flow-Induced Precursors in Poly-1-butene and Copolymer of 1-Butene and Ethylene[J]. J Rheol, 2018,62:725-737. doi: 10.1122/1.5021000

    32. [32]

      YING Qicong. Characterization of Polymer Molecular Weight Distribution as Applied to GPC Date of Polycarbonate[J]. Acta Polym Sin, 1978,1(1):17-24.

    33. [33]

      Galland G B, Quijada R, Rojas R. NMR Study of Branched Polyethylenes Obtained with Combined Fe and Zr Catalysts[J]. Macromolecules, 2002,35(2):339-345. doi: 10.1021/ma010744c

    34. [34]

      Randall J C, Zoepfl F J, Silverman J. A 13C-NMR Study of Radiation-induced Long-Chain Branching in Polyethylene[J]. Makromol Chem Rapid Commun, 1983,4(3):149-157. doi: 10.1002/marc.1983.030040307

    35. [35]

      M ller A J, Arnal M L. Thermal Fractionation of Polymers[J]. Prog Polym Sci, 2005,30(5):559-603. doi: 10.1016/j.progpolymsci.2005.03.001

    36. [36]

      Zhang M Q, Wanke S E. Quantitative Determination of Short-Chain Branching Content and Distribution in Commercial Polyethylenes by Thermally Fractionated Differential Scanning Calorimetry[J]. Polym Eng Sci, 2003,43(12):1878-1888. doi: 10.1002/pen.10159

    37. [37]

      Vega J F, Santamaria A, Munoz-Escalona A. Small-amplitude Oscillatory Shear Flow Measurements as a Tool to Detect Very Low Amounts of Long Chain Branching in Polyethylenes[J]. Macromolecules, 1998,31:3639-3647. doi: 10.1021/ma9708961

    38. [38]

      Dealy J M, Larson R G. Structure and Rheology of Molten Polymers[M]. Munich, Carl Hanser Verlag, 2006.

    39. [39]

      Fetters L J, Lohse D J, Colby R H. Chain Dimensions and Entanglement Spacings[M]. In: Mark, J E, Ed. Physical Properties of Polymers Handbook, 2nd ed.; Springer: New York, 2007, Chapter 25: 445-452.

  • 加载中
    1. [1]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    7. [7]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    12. [12]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    13. [13]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(7)
  • Abstract views(1960)
  • HTML views(279)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return