Citation: DENG Junfei, DU Weimin, WANG Mengyao, WEI Qinghe. Synthesis and the Electrochemical Energy Storage of Porous Biomass Carbon from Corn Stalk[J]. Chinese Journal of Applied Chemistry, ;2019, 36(11): 1323-1332. doi: 10.11944/j.issn.1000-0518.2019.11.190102 shu

Synthesis and the Electrochemical Energy Storage of Porous Biomass Carbon from Corn Stalk

  • Corresponding author: DU Weimin, dwmchem@163.com
  • Received Date: 15 April 2019
    Revised Date: 24 June 2019
    Accepted Date: 11 July 2019

    Fund Project: Supported by the National Natural Science Foundation of China(No.U1404203), the Program for Innovative Research Team of Science and Technology in the University of Henan Province(No.16IRTSTHN003), and the Special Projects of New Energy Vehicle Development of Anyang City(No.2017-480-15)the Special Projects of New Energy Vehicle Development of Anyang City 2017-480-15the National Natural Science Foundation of China U1404203the Program for Innovative Research Team of Science and Technology in the University of Henan Province 16IRTSTHN003

Figures(7)

  • Porous biomass carbon with high specific surface area(2167 m2/g) was prepared from corn stalk. By optimizing the experimental conditions, porous biomass carbon material with the best performance can be obtained with specific capacitance of 390 F/g at a current density of 1 A/g. More importantly, liquid-phase symmetric supercapacitors were assembled with the optimal porous biomass carbon as the electrode material and 3 mol/L KOH solution as the electrolyte. The present symmetrical supercapacitors have an energy density of 7 Wh/kg at the power density of 818 W/kg, and 91.1% capacitance retention after 10000 cycles. Meanwhile, after charged, two such supercapacitors in series can easily illuminate 15 LED lights and drive the small fans to work normally. These results indicate that porous biomass carbon from corn stalks has great practical significance as an advanced electrode material for supercapacitors.
  • 加载中
    1. [1]

      Noori A, El-Kady M F, Rahmanifar M S. Towards Establishing Standard Performance Metrics for Batteries, Supercapacitors and Beyond[J]. Chem Soc Rev, 2019,48(5):1272-1341. doi: 10.1039/C8CS00581H

    2. [2]

      Deb Nath N C, Jeon I Y, Ju M J. Edge-carboxylated Graphene Nanoplatelets as Efficient Electrode Materials for Eelectrochemical Supercapacitors[J]. Carbon, 2019,142(28):89-98.  

    3. [3]

      Cheng X Y, Liu C Z. Enhanced Coproduction of Hydrogen and Methane from Cornstalks by a Three-Stage Anaerobic Fermentation Process Integrated with Alkaline Hydrolysis[J]. Bioresource Technol, 2012,104(1):373-379.  

    4. [4]

      Zhu H, Wang X, Yang F. Promising Carbons for Supercapacitors Derived from Fungi[J]. Adv Mater, 2011,23(24):2745-2748. doi: 10.1002/adma.201100901

    5. [5]

      Jiang H, Yang L, Li C. High-Rate Electrochemical Capacitors from Highly Graphitic Carbon-Tipped Manganese Oxide/Mesoporous Carbon/Manganese Oxide Hybrid Nanowires[J]. Energ Environ Sci, 2011,4(5):1813-1819. doi: 10.1039/c1ee01032h

    6. [6]

      Liu C, Yu Z, Neff D. Graphene-based Supercapacitor with an Ultrahigh Energy Density[J]. Nano Lett, 2010,10(12):4863-4868. doi: 10.1021/nl102661q

    7. [7]

      Ma T Y, Liu L, Yuan Z Y. Direct Synthesis of Ordered Mesoporous Carbons[J]. Chem Soc Rev, 2013,42(9):3977-4003. doi: 10.1039/C2CS35301F

    8. [8]

      Huang J, Liang Y, Hu H. Ultrahigh-surface-area Hierarchical Porous Carbon from Chitosan:Acetic Acid Mediated Efficient Synthesis and Its Application in Superior Supercapacitors[J]. J Mater Chem A, 2017,5(47):24775-24781. doi: 10.1039/C7TA08046H

    9. [9]

      Zhu G, Ma L, Lv H. Pine Needle-derived Microporous Nitrogen-Doped Carbon Frameworks Exhibit High Performances in Electrocatalytic Hydrogen Evolution Reaction and Supercapacitors[J]. Nanoscale, 2017,9(3):1237-1243. doi: 10.1039/C6NR08139H

    10. [10]

      Qu G, Jia S, Wang H. Asymmetric Supercapacitor Based on Porous N-Doped Carbon Derived from Pomelo Peel and NiO Arrays[J]. ACS Appl Mater Interfaces, 2016,8(32):20822-20830. doi: 10.1021/acsami.6b06630

    11. [11]

      Fabičovicová K, Malter O, Lucas M. Hydrogenolysis of Cellulose to Valuable Chemicals over Activated Carbon Supported Mono-and Bimetallic Nickel/Tungsten Catalysts[J]. Green Chem, 2014,16(7):3580-3588. doi: 10.1039/C4GC00664J

    12. [12]

      Alonso D M, Wettstein S G, Dumesic J A. Bimetallic Catalysts for Upgrading of Biomass to Fuels and Chemicals[J]. Chem Soc Rev, 2012,41(24):8075-8098. doi: 10.1039/c2cs35188a

    13. [13]

      Pan C M, Ma H C, Fan Y T. Bioaugmented Cellulosic Hydrogen Production from Cornstalk by Integrating Dilute Acid-Enzyme Hydrolysis and Dark Fermentation[J]. Int J Hydrogen Energy, 2011,36(8):4852-4862. doi: 10.1016/j.ijhydene.2011.01.114

    14. [14]

      Cao G L, Guo W Q, Wang A J. Enhanced Cellulosic Hydrogen Production from Lime-treated Cornstalk Wastes Using Thermophilic Anaerobic Microflora[J]. Int J Hydrogen Energy, 2012,37(17):13161-13166. doi: 10.1016/j.ijhydene.2012.03.137

    15. [15]

      Resch G, Held A, Faber T. Potentials and Prospects for Renewable Energies at Global Scale[J]. Energy Policy, 2008,36(11):4048-4056. doi: 10.1016/j.enpol.2008.06.029

    16. [16]

      Jain A, Balasubramanian R, Srinivasan M P. Tuning Hydrochar Properties for Enhanced Mesopore Development in Activated Carbon by Hydrothermal Carbonization[J]. Micropor Mesopor Mat, 2015,203(3):178-185.  

    17. [17]

      Wang L, Tian C, Wang B. Controllable Synthesis of Graphitic Carbon Nanostructures from Ion-Exchange Resin-Iron Complex via Solid-State Pyrolysis process[J]. Chem Commun, 2008,42(42):5411-5413.  

    18. [18]

      Wang L, Tian C, Wang H. Mass Production of Graphene via an in situ Self-generating Template Route and Its Promoted Activity as Electrocatalytic Support for Methanol Electroxidization[J]. J Phys Chem C, 2010,114(19):8727-8733. doi: 10.1021/jp911292p

    19. [19]

      Wang B, Tian C, Zheng C. A Simple and Large-Scale Strategy for the Preparation of Ag Nanoparticles Supported on Resin-Derived Carbon and Their Antibacterial Properties[J]. Nanotechnology, 2009,20(2):025603-025607. doi: 10.1088/0957-4484/20/2/025603

    20. [20]

      Yu H, Zhang W, Li T. Capacitive Performance of Porous Carbon Nanosheets Derived from Biomass Cornstalk[J]. RSC Adv, 2017,7(2):1067-1074. doi: 10.1039/C6RA25899A

    21. [21]

      Zhou Y J, Luner P, Caluwe P. Mechanism of Crosslinking of Papers with Polyfunctional Carboxylic Acids[J]. J Appl Polym Sci, 1995,58(9):1523-1534. doi: 10.1002/app.1995.070580915

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    7. [7]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    12. [12]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    13. [13]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    16. [16]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    17. [17]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    18. [18]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    19. [19]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    20. [20]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

Metrics
  • PDF Downloads(6)
  • Abstract views(1572)
  • HTML views(287)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return