Citation: YU Yancun, WANG Xian, GE Junjie, LIU Changpeng, XING Wei. Polypyrrole Modified Carbon-Supported Pd Catalyst for Formic Acid Electrooxidation[J]. Chinese Journal of Applied Chemistry, ;2019, 36(11): 1317-1322. doi: 10.11944/j.issn.1000-0518.2019.11.190065 shu

Polypyrrole Modified Carbon-Supported Pd Catalyst for Formic Acid Electrooxidation

  • Corresponding author: XING Wei, xingwei@ciac.ac.cn
  • Received Date: 13 March 2019
    Revised Date: 27 March 2019
    Accepted Date: 24 April 2019

    Fund Project: Jilin Province Science and Technology Development Program 20180101030JCSupported by the National Natural Science Foundation of China(No.21633008, No.21733004, No.21603216), Jilin Province Science and Technology Development Program(No.20180101030JC), and the Hundred Talents Program of Chinese Academy of Sciencesthe National Natural Science Foundation of China 21603216the National Natural Science Foundation of China 21733004the National Natural Science Foundation of China 21633008

Figures(5)

  • The active component of active carbon-supported Pd of the anode catalyst in direct formic acid fuel cell(DFAFC) is easy to aggregate and has electrocorrosive effect on the carbon carrier, resulting in low catalytic activity and stability. In this paper, regulating the carbon catalyst carrier effectively improved the catalytic activity and stability for formic acid electrooxidation. The polypyrrole(PPy) doped carbon was synthesized by low temperature chemical oxidation and activated carbon was added during the polymerization process. Pd catalyst supported on the carbon composites was prepared. The surface morphology of the pyropolypyrrole doped catalyst was characterized. It is found that the Pd nanoparticles could be stabilized at 2.25 nm. The surface nitrogen element of the catalyst exists in the form of pyrrole nitrogen. The carbon-based pyrolytic polypyrrole supported Pd has excellent performance for the formic acid electrocatalytic oxidation. Compared with the Pd/C catalyst, the specific activity per Pd unit mass is increased by 2.5 times.
  • 加载中
    1. [1]

      Yu X W, Pickup P G. Recent Advances in Direct Formic Acid Fuel Cells(DFAFC)[J]. J Power Sources, 2008,182(1):124-132. doi: 10.1016/j.jpowsour.2008.03.075

    2. [2]

      YUAN Qingyun, TANG Yawen, ZHOU Yiming. Formic Acid as Methanol-alternative Fuel in Direct Methanol Fuel Cell[J]. Chinese J Appl Chem, 2005,22(9):7-10.  

    3. [3]

      Lu Y X, Du S F, Steinberger-wilckens R. One-Dimensional Nanostructured Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells-A Review[J]. Appl Catal B-Environ, 2016,199:292-314. doi: 10.1016/j.apcatb.2016.06.022

    4. [4]

      Shao Y Y, Yin G P, Gao Y Z. Understanding and Approaches for the Durability Issues of Pt-Based Catalysts for Pem Fuel Cell[J]. J Power Sources, 2007,171(2):558-566. doi: 10.1016/j.jpowsour.2007.07.004

    5. [5]

      Ji X L, Lee K T, Holden R. Nanocrystalline Intermetallics on Mesoporous Carbon for Direct Formic Acid Fuel Cell Anodes[J]. Nat Chem, 2010,2(4):286-293. doi: 10.1038/nchem.553

    6. [6]

      Zhang S, Shao Y Y, Liao H G. Graphene Decorated with Ptau Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation[J]. Chem Mat, 2011,23(5):1079-1081. doi: 10.1021/cm101568z

    7. [7]

      Tian N, Zhou Z Y, Sun S G. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity[J]. Science, 2007,316(5825):732-735. doi: 10.1126/science.1140484

    8. [8]

      Mota-Lima A, Silva D R, Gasparotto L H S. Stationary and Damped Oscillations in a Direct Formic Acid Fuel Cell(DFAFC) Using Pt/C[J]. Electrochim Acta, 2017,235:135-142. doi: 10.1016/j.electacta.2017.03.056

    9. [9]

      Antolini E. Palladium in Fuel Cell Catalysis[J]. Energy Environ Sci, 2009,2(9):915-931. doi: 10.1039/b820837a

    10. [10]

      Yan H J, Jiao Y Q, Wu A P. Synergism of Molybdenum Nitride and Palladium for High-Efficiency Formic Acid Electrooxidation[J]. J Mater Chem A, 2018,6(17):7623-7630. doi: 10.1039/C8TA02488J

    11. [11]

      LI Huanzhi, SHEN Juanzhang, YANG Gaixiu. Anodic Pd Catalyst in Direct Formic Acid Fuel Cell and Its Electrocatalytic Stability[J]. Chem J Chinese Univ, 2011,32(7):1445-1450.  

    12. [12]

      El-Nagar G A, Dawood K M, El-Deab M S. Efficient Direct Formic Acid Fuel Cell(DFAFC) Anode of Nano-sized Palladium Complex:High Durability and Activity Origin[J]. Appl Catal B-Environ, 2017,213:118-126. doi: 10.1016/j.apcatb.2017.05.006

    13. [13]

      Wang A L, Xu H, Feng J X. Design of Pd/PANI/Pd Sandwich-Structured Nanotube Array Catalysts with Special Shape Effects and Synergistic Effects for Ethanol Electrooxidation[J]. J Am Chem Soc, 2013,135(29):10703-10709. doi: 10.1021/ja403101r

    14. [14]

      Han H, Noh Y, Kim Y. Electrocatalytic Oxidations of Formic Acid and Ethanol over Pd Catalysts Supported on a Doped Polypyrrole-Carbon Composite[J]. Chem Select, 2017,2(22):6260-6268.  

    15. [15]

      Wang W N, Gao Y C, Jia X D. A Novel Au-Pt@Ppy(Polypyrrole) Coral-Like Structure: Facile Synthesis, High SERS Effect, and Good Electro Catalytic Activity[J]. J Colloid Interface Sci, 2013,396:23-28. doi: 10.1016/j.jcis.2012.12.059

    16. [16]

      Aydin R, Dogan H O, Koleli F. Electrochemical Reduction of Carbondioxide on Polypyrrole Coated Copper Electro-Catalyst under Ambient and High Pressure in Methanol[J]. Appl Catal B-Environ, 2013,140:478-482.  

    17. [17]

      Zheng L, Dong Y Y, Chi B. UIO-66-NH2-Derived Mesoporous Carbon Catalyst Co-Doped with Fe/N/S as Highly Efficient Cathode Catalyst for PEMFCs[J]. Small, 2019,15(4)1803520. doi: 10.1002/smll.201803520

    18. [18]

      Bi Q Y, Lin J D, Liu Y M. Dehydrogenation of Formic Acid at Room Temperature:Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon[J]. Angew Chem Int Ed, 2016,55(39):11849-11853. doi: 10.1002/anie.201605961

    19. [19]

      LIU Jiajia, WU Bing, GAO Ying. Preparation of Polypyrrole-Carbon Black Supported Pd Catalyst for Formic Acid Electrooxidation[J]. Acta Chim Sin, 2012,70(16):1743-1747.  

  • 加载中
    1. [1]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    2. [2]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    3. [3]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    4. [4]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    5. [5]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    6. [6]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    7. [7]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Leyu DINGYing HEZhihe WEIYang PENGZhao DENG . Conductive polypyrrole-confined Co-MOF-74 for high-performance lithium metal anodes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2491-2502. doi: 10.11862/CJIC.20250176

    11. [11]

      Zhiqiang XINGJinling LIUMingmin SULei ZHANGLijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    14. [14]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    15. [15]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    19. [19]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    20. [20]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

Metrics
  • PDF Downloads(4)
  • Abstract views(1366)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return