Citation: QIAO Zongwen, CHEN Tao. Properties of Side Chain Type Sulfonated Polysulfone Proton Exchange Membranes for Fuel Cells[J]. Chinese Journal of Applied Chemistry, ;2019, 36(8): 917-923. doi: 10.11944/j.issn.1000-0518.2019.08.190013 shu

Properties of Side Chain Type Sulfonated Polysulfone Proton Exchange Membranes for Fuel Cells

  • Corresponding author: QIAO Zongwen, qiaozongwen@126.com
  • Received Date: 14 January 2019
    Revised Date: 22 February 2019
    Accepted Date: 17 April 2019

    Fund Project: Youth Talent Promotion Plan of Xi′an Association for Science and Technology and Science Research Project of Shaanxi Institute of Technology Gfy18-04Natural Science Special Project of Shaanxi Education Department 18JK0069Supported by Natural Science Special Project of Shaanxi Education Department(No.18JK0069), Youth Talent Promotion Plan of Xi′an Association for Science and Technology and Science Research Project of Shaanxi Institute of Technology(No.Gfy18-04)

Figures(6)

  • Chloromethylated polysulfones(CPS) was used as the precursors, and side chain type sulfonted polysulfone(PS-BDS) was obtained using disodium 1, 2-dihydroxybenzene-3, 5-disufonate as nucleophilic reagents. The corresponding proton exchange membranes(PEMs) were produced using solution casting method. The relationship between the temperature and properties of PEMs was studied. Since they have characteristic micro-phase separation structures by locating hydrophilic sulfonic acid group far away from hydrophobic main chain of PS, PEMs have excellent dimensional stability at high water sorption ratio. With the increase of temperature, the proton conductivity, the swelling ratio and the water sorption ratio increase. PS-BDS PEMs have comprehensive size stability and methanol permeability. The swelling ratio of PS-BDS-4 PEM is only 22.1% at 25℃ and 55.0% at 85℃. The methanol permeability is 9.94×10-7 cm2/s at 25℃, lower than those of commercial Nafion115(16.8×10-7 cm2/s) and Nafion117(23.8×10-7 cm2/s) PEMs.
  • 加载中
    1. [1]

      Kima K, Junga B K, Koa T. Polysulfones Containing Sulfonated Polytriazole Side Chains for Proton Exchange Membranes[J]. J Membr Sci, 2018,554(15):232-243.  

    2. [2]

      Liu D, Xu M Z, Fang M L. Branched Comb-shaped Poly(arylene ether sulfone)s Containing Flexible Alkyl Imidazolium Side Chains as Anion Exchange Membranes[J]. J Mater Chem, 2018,6:10879-10890. doi: 10.1039/C8TA02115E

    3. [3]

      Yan X M, Zhang C M, Dong Z W. Amphiprotic Side-Chain Functionalization Constructing Highly Proton/Vanadium-Selective Transport Channels for High-Performance Membranes in Vanadium Redox Flow Batteries[J]. Appl Mater Interfaces, 2018,10(38):32247-32255. doi: 10.1021/acsami.8b11993

    4. [4]

      Li X, Zhao Y, Li W W. Molecular Dynamics Simulation of Radiation Grafted FEP Films as Proton Exchange Membranes:Effects of the Side Chain Length[J]. Int J Hydrogen Energy, 2017,42(50):29977-29987. doi: 10.1016/j.ijhydene.2017.09.043

    5. [5]

      Han M M, Zhang G, Li M Y. Sulfonated Poly(etheretherketone) Polybenzimidazole Oligomer/Epoxy Resin Composite Membranes in Situ Polymerization for Direct Methanol Fuel Cell Usages[J]. J Power Sources, 2011,196:9916-9923. doi: 10.1016/j.jpowsour.2011.08.049

    6. [6]

      QIAO Zongwen, YAN Xiaoqian. Properties of Naphthalenesulfonic Acid Type Polysulfone Proton Exchange Membrane[J]. Chem Res Appl, 2018,30(12):1993-1998. doi: 10.3969/j.issn.1004-1656.2018.12.011

    7. [7]

      Kumar P, Dutta K, Das S. Membrane Prepared by Incorporation of Crosslinked Sulfonated Polystyrene in the Blend of PVdF-co-HFP/Nafion[J]. Appl Energy, 2014,123:66-74. doi: 10.1016/j.apenergy.2014.02.060

    8. [8]

      RONG Qian, GU Shuang, HE Gaohong. Preparation and Performance of Sulfonated Polyether Ether/Ketone/Poly4-Vinylepyridine Acid-Base Composite Proton Exchange Membrane[J]. Polym Mater Sci Eng, 2009,8:126-129.

    9. [9]

      GONG Feixiang, QI Yonghong, XUE Qunxiang. Synthesis and Properties of Fluorinated Poly(arylene ether sulfone)s with Sulfonated Pentiptycene Pendants as Proton Exchange Membranes[J]. Chem J Chinese Univ, 2014,35:433-439. doi: 10.7503/cjcu20130605

    10. [10]

      Jin C H, Zhu X L, Zhang S. Highly Conductive Flexible Alkylsulfonated Side Chains Poly(phthalazinone ether ketone)s for Proton Exchange Membranes[J]. Polymer, 2018,148(18):269-277.  

    11. [11]

      Zhang X L, Shi Q, Chen P. Block Poly(arylene ether sulfone) Copolymers Tethering Aromatic Side-Chain Quaternary Ammonium as Anion Exchange Membranes[J]. Polym Chem, 2018,9:699-711. doi: 10.1039/C7PY01558E

    12. [12]

      QIAO Zongwen, CHEN Tao. Effect of Side Chain Structure on Properties of Side Chain Type Sulfonated Polysulfone Proton Exchange Membranes[J]. Chem Bull, 2019,82(5):457-462.  

    13. [13]

      Liu D, Tao D, Ni J P. Synthesis and Properties of Highly Branched Sulfonated Poly(arylene ether)s with Flexible Alkylsulfonated Side Chains as Proton Exchange Membranes[J]. J Mater Chem C, 2016,4:1326-1335.  

    14. [14]

      Pang J H, Shen K Z, Feng S N. Polymer Electrolyte Membranes Based on Poly(arylene ether)s with Flexible Disulfophenyl Pendant[J]. J Power Sources, 2014,263:59-65. doi: 10.1016/j.jpowsour.2014.03.100

    15. [15]

      TAO Dan, XIANG Xiongzhi, WANG Lei. Synthsis and Characterization of Poly(arylene ether)s Proton Exchange Membranes with Sulfonic Groups Attached on Pendent Naphthyl Rings[J]. Acta Polym Sin, 2014,3:326-332.

    16. [16]

      Ekström H, Lafitte B, Ihonen J. Evaluation of a Sulfophenylated Polysulfone Membrane in a Fuel Cell at 60 to 110℃[J]. Solid State Ionics, 2007,178:959-966. doi: 10.1016/j.ssi.2007.04.002

    17. [17]

      Zhang Y, Wan Y, Zhao C J. Novel Side-Chain-Type Sulfonated Poly(arylene ether ketone) with Pendant Sulfoalkyl Groups for Direct Methanol Fuel Cells[J]. Polymer, 2009,50:4471-4478. doi: 10.1016/j.polymer.2009.07.036

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    8. [8]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    9. [9]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    10. [10]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    11. [11]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    16. [16]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    17. [17]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    18. [18]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    19. [19]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    20. [20]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

Metrics
  • PDF Downloads(3)
  • Abstract views(364)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return