Citation: WANG Meng, WANG Yan, WEI Dequan, LIANG Lanju, WANG Yueping, ZHANG Bin. Influence of Pinecone-Like Ferric Oxide on the Electro-Optical Properties of Nematic Liquid Crystals[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 578-584. doi: 10.11944/j.issn.1000-0518.2019.05.180297 shu

Influence of Pinecone-Like Ferric Oxide on the Electro-Optical Properties of Nematic Liquid Crystals

  • Corresponding author: WANG Meng, 18863278266@139.com WANG Yan, zzxygdwm@163.com
  • Received Date: 10 September 2018
    Revised Date: 7 October 2018
    Accepted Date: 29 November 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.61701434, No.61735010, No.61675147), the Natural Science Foundation of Shandong Province, China(No.ZR2017MF005, No.ZR2018LF001), the Science and Technology Development Planning Project of Zaozhuang(No.2017GX06)the Science and Technology Development Planning Project of Zaozhuang 2017GX06the National Natural Science Foundation of China 61735010the National Natural Science Foundation of China 61701434the National Natural Science Foundation of China 61675147the Natural Science Foundation of Shandong Province, China ZR2017MF005the Natural Science Foundation of Shandong Province, China ZR2018LF001

Figures(5)

  • Liquid crystal(LC) materials are widely used in LC displays(LCD). However, due to the presence of impurities in liquid crystal, the application voltage of liquid crystal becomes large, which results in the increase of energy consumption. In order to decrease the threshold voltage and saturation voltage, nanoparticles are usually added to LC to improve the electro-optical performance. In this paper, pinecone-like ferric oxide(P-Fe2O3) nanoparticles with uniform shape and size were prepared by a simple chemical precipitation method. Nematic liquid crystal 4-cyano-4'-pentylbiphenyl(5CB) is doped with pinecone-like Fe2O3 nanoparticles in different doping contents. The results show that the best electro-optical properties of the LC is achieved when the doping mass fraction is 0.5%. The threshold voltage and saturation voltage decrease by 24.8% and 45.2%, respectively, the contrast ratio increases by 46%, and the response time decreases to 17.6 ms. The property is superior to the ordinary Fe2O3 nanoparticles doped in 5CB with the threshold voltage and saturation voltage decreased by 15% and 16% under the same condition, which is attributed to the uniform dispersion of pinecone-like Fe2O3 in nematic LC 5CB and the adsorption of impurity ions by the rough surface of pinecone-like Fe2O3 abating the shielding effect.
  • 加载中
    1. [1]

      Bremer M, Tarumi K. Gas Phase Molecular Modeling of Liquid Crystals:Electro-Optical Anisotropies[J]. Adv Mater, 1993,5(11):842-848.  

    2. [2]

      Xu L, Zhao D, Li Y. Improvement of the Electro-Optical Properties of Nematic Liquid Crystals by Doping with ZIF-8 Materials[J]. Acta Phys-Chim Sin, 2016,32(9):2377-2382.  

    3. [3]

      XU Lihong, ZHAO Dongyu, LIU Bin. Effects of Ni Particles with Different Morphologies on Electro-Optical Properties of Nematic Liquid Crystal[J]. J Beijing Univ Aeronaut Astronaut, 2016,42(2):400-405.  

    4. [4]

      Hsu C C, Chen Y X, Li H W. Low Switching Voltage ZnO Quantum Dots Doped Polymer-Dispersed Liquid Crystal film[J]. Opt Express, 2016,24(7):7063-7068. doi: 10.1364/OE.24.007063

    5. [5]

      Koenig G M, Meli M V, Park J S. Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals[J]. Chem Mater, 2007,19(5):1053-1061. doi: 10.1021/cm062438p

    6. [6]

      Zhao D, Peng Y, Xu L. Liquid-Crystal Biosensor Based on Nickel-Nanosphere-Induced Homeotropic Alignment for the Amplified Detection of Thrombin[J]. ACS Appl Mater Interfaces, 2015,7(42):23418-23422. doi: 10.1021/acsami.5b08924

    7. [7]

      Mirzaei J, Urbanski M, Yu K. Nanocomposites of a Nematic Liquid Crystal Doped with Magic-Sized CdSe Quantum Dots[J]. J Mater Chem, 2011,21(34):12710-12716. doi: 10.1039/c1jm11832c

    8. [8]

      Al-Zangana S, Iliut M, Turner M. Properties of a Thermotropic Nematic Liquid Crystal Doped with Graphene Oxide[J]. Adv Opt Mater, 2016,4(10):1541-1548. doi: 10.1002/adom.v4.10

    9. [9]

      Urbanski M, Lagerwall J P F. Nanoparticles Dispersed in Liquid Crystals:Impact on Conductivity, Low-Frequency Relaxation and Electro-Optical Performance[J]. J Mater Chem C, 2016,4(16):3485-3491. doi: 10.1039/C6TC00659K

    10. [10]

      Sun J, Yu L, Wang L. Optical Intensity-Driven Reversible Photonic Bandgaps in Self-organized Helical Superstructures with Handedness Inversion[J]. J Mater Chem C, 2017,5(15):3678-3683. doi: 10.1039/C7TC00534B

    11. [11]

      Bisoyi H K, Li Q. Light-Driven Liquid Crystalline Materials:From Photo-Induced Phase Transitions and Property Modulations to Applications[J]. Chem Rev, 2016,116(24):15089-15166. doi: 10.1021/acs.chemrev.6b00415

    12. [12]

      Ye W, Yuan R, Dai Y. Improvement of Image Sticking in Liquid Crystal Display Doped with γ-Fe2O3 Nanoparticles[J]. Nanomaterials, 2018,8(1):1-13.  

    13. [13]

      Yadav S P, Pande M, Manohar R. Applicability of TiO2 Nanoparticle Towards Suppression of Screening Effect in Nematic Liquid Crystal[J]. J Mol Liq, 2015,208(1):34-37.  

    14. [14]

      Zhao D, Huang W, Cao H. Homeotropic Alignment of Nematic Liquid Crystals by a Photocross-Linkable Organic Monomer Containing Dual Photofunctional Groups[J]. J Phys Chem B, 2009,113(10):2961-2965. doi: 10.1021/jp8101089

    15. [15]

      Zamora-Ledezma C, Blanc C, Maugey M. Anisotropic Thin Films of Single-Wall Carbon Nanotubes from Aligned Lyotropic Nematic Suspensions[J]. Nano Lett, 2008,8(12):4103-4107. doi: 10.1021/nl801525x

    16. [16]

      Nishida N, Shiraishi Y, Kobayashi S. Fabrication of Liquid Crystal Sol Containing Capped Ag-Pd Bimetallic Nanoparticles and Their Electro-Optic Properties[J]. J Phys Chem C, 2008,112(51):20284-20290. doi: 10.1021/jp807723j

    17. [17]

      Chandran A, Prakash J, Naik K. Preparation and Characterization of MgO Nanoparticles/Ferroelectric Liquid Crystal Composites for Faster Display Devices with Improved Contrast[J]. J Mater Chem C, 2014,2(10):1844-1853. doi: 10.1039/c3tc32017k

    18. [18]

      Lee H M, Chung H K, Park H G. Nickel Oxide Nanoparticles Doped Liquid Crystal System for Superior Electro-Optical Properties[J]. J Nanosci Nanotechnol, 2015,15(10):8139-8143.  

    19. [19]

      LIU Fashun, CUI Xiaopeng, ZHAO Dongyu. Electro-Optical Properties of Smectic Liquid Crystal Display Doped with Cu2O Nanoparticles[J]. J South China Norm Univ, 2017,49(1):35-39.  

    20. [20]

      Sharma M, Sinha A, Shenoy M R. Effect of TiO2 Nanoparticle Doping on the Performance of Electrically-Controlled Nematic Liquid Crystal Core Waveguide Switch[J]. Opt Mater, 2015,49(32):292-296.  

    21. [21]

      Flak D, Chen Q L, Mun B S. In Situ Ambient Pressure XPS Observation of Surface Chemistry and Electronic Structure of alpha-Fe2O3 and gamma-Fe2O3 Nanoparticles[J]. Appl Surf Sci, 2018,455:1019-1028. doi: 10.1016/j.apsusc.2018.06.002

    22. [22]

      Reddy M V, Yu T, Sow C H. α-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries[J]. Adv Funct Mater, 2007,17(15):2792-2799. doi: 10.1002/(ISSN)1616-3028

  • 加载中
    1. [1]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    9. [9]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    10. [10]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    11. [11]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    14. [14]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    15. [15]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(5)
  • Abstract views(509)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return