Citation: YI Yanlin, LIANG Qiuju, LI Lingdong, LIU Jian'gang, HAN Yanchun. Constructing Interpenetrating Network of Polymer/Non-fullerene Blend System by Small Molecule Preferential Crystallization[J]. Chinese Journal of Applied Chemistry, ;2019, 36(4): 423-430. doi: 10.11944/j.issn.1000-0518.2019.04.180404 shu

Constructing Interpenetrating Network of Polymer/Non-fullerene Blend System by Small Molecule Preferential Crystallization

  • Corresponding author: LI Lingdong, lild@dlut.edu.cn LIU Jian'gang, niitawh@ciac.ac.cn HAN Yanchun, ychan@ciac.ac.cn
  • Received Date: 20 December 2018
    Revised Date: 13 January 2019
    Accepted Date: 23 January 2019

    Fund Project: Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry 2015.07Fundamental Research Funds for the Central Universities DUT17LK17Supported by the Fundamental Research Funds for the Central Universities(No.DUT14RC(3)081, No.DUT17LK17), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry(No.2015.07)Fundamental Research Funds for the Central Universities DUT14RC(3)081

Figures(6)

  • The ordered aggregation of non-fullerene small molecular acceptors(SMAs) is critical in determining the charge transport and bimolecular recombination in polymer/SMAs solar cells. However, due to the asymmetric phase separation, the polymers prefer to form crystalline networks, which inhibits the molecular diffusion of SMAs and results in weak crystallinity of SMAs. In poly[(2, 6-(4, 8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1, 2-b:4, 5-b']dithiophene))-alt-(5, 5-(1', 3'-di-2-thienyl-5', 7'bis(2-ethylhexyl)benzo[1', 2'-c:4', 5'-c']dithiophene-4, 8-dione))](PBDB-T)/9-bis(2-methylene-((3-(1, 1-dicyanomethylene)-6, 7-difluoro)-indanone))-5, 5, 11, 11-tetrakis(4-hexylphenyl)-dithieno[2, 3-d:2', 3'-d']-s-indaceno[1, 2-b:5, 6-b']dithiophene(IT-4F) blends, crystallization of IT-4F could be improved by tetrahydrofuran solvent vapor annealing, while crystallization of PBDB-T could be enhanced by thermal annealing at 150℃. Hence, the prior crystallization of IT-4F could be realized by regulating the sequence of two post annealing methods, which facilitates the diffusion of IT-4F and is benefit for the formation of interpenetrating network. The optimization of the film morphology reduced the bimolecular recombination and resulted in an improved device performance from 5.95% to 7.18%.
  • 加载中
    1. [1]

      Zhao B, He Z, Cheng X. Flexible Polymer Solar Cells with Power Conversion Efficiency of 8.7%[J]. J Mater Chem C, 2014,2(26):5077-5082. doi: 10.1039/C3TC32520B

    2. [2]

      Shaheen S, Radspinner R, Peyghambarian N. Fabrication of Bulk Heterojunction Plastic Solar Cells by Screen Printing[J]. Appl Phys Lett, 2001,79(18):2996-2998. doi: 10.1063/1.1413501

    3. [3]

      Krebs F. Fabrication and Processing of Polymer Solar Cells:A Review of Printing and Coating Techniques[J]. Sol Energy Mater Sol Cells, 2009,93(4):394-412. doi: 10.1016/j.solmat.2008.10.004

    4. [4]

      Cui Y, Yao H, Yang C. Organic Solar Cells with an Efficiency Approaching 15%[J]. Acta Polym Sin, 2018,2:223-230.  

    5. [5]

      Li X, Yao J, Angunawela I. Improvement of Photovoltaic Performance of Polymer Solar Cells by Rational Molecular Optimization of Organic Molecule Acceptors[J]. Adv Energy Mater, 2018,8(23)1800815. doi: 10.1002/aenm.201800815

    6. [6]

      Li S, Ye L, Zhao W. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells[J]. J Am Chem Soc, 2018,140(23):7159-7167. doi: 10.1021/jacs.8b02695

    7. [7]

      Zhang S, Qin Y, Zhu J. Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor[J]. Adv Mater, 2018,30(20)1800868. doi: 10.1002/adma.v30.20

    8. [8]

      Zhang H, Yao H, Hou J. Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Small-Molecule Acceptors[J]. Adv Mater, 2018,30(28)1800613. doi: 10.1002/adma.v30.28

    9. [9]

      Zhang Y, Yao H, Zhang S. Fluorination vs. Chlorination:A Case Study on High Performance Organic Photovoltaic Materials[J]. Sci Chi Chem, 2018,61(10):1328-1337. doi: 10.1007/s11426-018-9260-2

    10. [10]

      Zhao F, Wang C, Zhan X. Morphology Control in Organic Solar Cells[J]. Adv Energy Mater, 2018,8(28)1703147. doi: 10.1002/aenm.v8.28

    11. [11]

      Ma W, Tumbleston J, Ye L. Quantification of Nano-and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, J(SC), and FF in Polymer:Fullerene Solar Cells[J]. Adv Mater, 2014,26(25):4234-4241. doi: 10.1002/adma.v26.25

    12. [12]

      Yang X, Loos J, Veenstra S. Nanoscale Morphology of High-Performance Polymer Solar Cells[J]. Nano Lett, 2005,5(4):579-583. doi: 10.1021/nl048120i

    13. [13]

      Howard I, Mauer R, Meister M. Effect of Morphology on Ultrafast Free Carrier Generation in Polythiophene:Fullerene Organic Solar Cells[J]. J Am Chem Soc, 2010,132(42):14866-14876. doi: 10.1021/ja105260d

    14. [14]

      Ye L, Zhao W, Li S. High-Efficiency Nonfullerene Organic Solar Cells:Critical Factors That Affect Complex Multi-length Scale Morphology and Device Performance[J]. Adv Energy Mater, 2017,7(7)1602000. doi: 10.1002/aenm.201602000

    15. [15]

      Holliday S, Ashraf R, Wadsworth A. High-Efficiency and Air-Stable P3HT-Based Polymer Solar Cells with a New Non-fullerene Acceptor[J]. Nat Commun, 2016,711585. doi: 10.1038/ncomms11585

    16. [16]

      Zhao F, Dai S, Wu Y. 1% Efficiency[J]. Adv Mater, 2017,29(18)1700144. doi: 10.1002/adma.201700144

    17. [17]

      Li W, Ye L, Li S. A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push-Pull Effect of the Nonfullerene Acceptor[J]. Adv Mater, 2018,30(16)1707170. doi: 10.1002/adma.201707170

    18. [18]

      Liang Q, Han J, Song C. Tuning Molecule Diffusion to Control the Phase Separation of the p-DTS(FBTTh2)2/EP-PDI Blend System via Thermal Annealing[J]. J Mater Chem C, 2017,5(27):6842-6851. doi: 10.1039/C7TC01763D

    19. [19]

      Han J, Liang Q, Qu Y. Morphology Control of Non-Fullerene Blend Systems Based on Perylene Diimide Acceptors[J]. Acta Phys Chim Sin, 2018,34(4):391-406.  

  • 加载中
    1. [1]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    5. [5]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    6. [6]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    10. [10]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    11. [11]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    12. [12]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    20. [20]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

Metrics
  • PDF Downloads(4)
  • Abstract views(1350)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return