Research Progress in Graphene Electronic Devices
- Corresponding author: SHI Ling, shiling@mail.buct.edu.cn
Citation:
HUO Ran, WU Yuxuan, YANG Yu, PIAO Shuqing, ZHANG Zhicheng, XIAO Jihai, SHI Ling. Research Progress in Graphene Electronic Devices[J]. Chinese Journal of Applied Chemistry,
;2019, 36(3): 245-258.
doi:
10.11944/j.issn.1000-0518.2019.03.180305
Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896
Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958,80(6):1339-1339. doi: 10.1021/ja01539a017
Reina A, Jia X, Ho J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition[J]. Nano Lett, 2009,9(1):30-35. doi: 10.1021/nl801827v
Kageshima H, Hibino H, Nagase M. Theoretical Study of Epitaxial Graphene Growth on SiC(0001) Surfaces[J]. Appl Phys Express, 2009,2(6)5502.
Ping G, Zhang J, Cheng J. Graphene Nanosheets Prepared by Low-Temperature Exfoliation and Reduction Technique Toward Fabrication of High-Performance Poly(1-butene)/graphene Films[J]. Iran Polym J, 2016,26(1):1-15.
Liang K, Shi L, Zhang J. Fabrication of Shape-Stable Composite Phase Change Materials Based on Lauric Acid and Graphene/Graphene Oxide Complex Aerogels for Enhancement of Thermal Energy Storage and Electrical Conduction[J]. Thermochim Acta, 2018,664:1-15. doi: 10.1016/j.tca.2018.04.002
Lee C, Wei X, Kysar J W. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J]. Science, 2008,321(5887):385-388. doi: 10.1126/science.1157996
Chen J H, Jang C, Xiao S D. Intrinsic and Extrinsic Performance Limits of Graphene Deviceson SiO2[J]. Nat Nanotechnol, 2008,3(4):206-209. doi: 10.1038/nnano.2008.58
Balandin A A, Ghosh S, Bao W. Superior Thermal Conductivity of Single-Layer Graphene[J]. Nano Lett, 2008,8(3):902-907. doi: 10.1021/nl0731872
Nair R R, Blake P, Grigorenko A N. Fine Structure Constant Defines Visual Tranparency of Graphene[J]. Science, 2008,320(5881)1308. doi: 10.1126/science.1156965
Lin Y M, Valdes-Garcia A, Han S J. Wafer-Scale Graphene Integrated Circuit[J]. Science, 2011,332(6035):1294-1297. doi: 10.1126/science.1204428
Guo D, Hen S J, Lin C H, et al. Graphene Based Three-Dimensional Integrated Circuit Device: US, US8895372[P]. 2014.
Pak J S, Pathak M, Lim S K, et al. Modeling of Electromigration in Through-Silicon-Via Based 3D IC[C]//Electronic Components and Technology Conference. IEEE, 2011, 301(4): 1420-1427.
Chiariello A G, Maffucci A, Miano G. Modeling Carbon Nanotube Bundles for Future On-Chip Nano-interconnects[C]//Electrical Design of Advanced Packaging and Systems Symposium. IEEE, 2011: 1-4.
Hossain N M, Hossain M, Yousuf A H B, et al. Thermal Aware Graphene Based Through Silicon via Design for 3D IC[C]//3D Systems Integration Conference. IEEE, 2013: 1-4.
BAN Tao, PAN Zhongliang, CHEN Ling. Study on Heat Dissipation Method of Three-Dimensional Integrated Circuit Using Graphene Heat Conduction Layer[J]. Electron Technol Software Eng, 2018(5):99-101.
Y·DU. Three-Dimensional(3D) Integrated Circuit(3DIC) with Graphene Shield and Related Manufacturing Methods: CN 104981899 A[P]. 2015(in Chinese). Y·
Han S J, Garcia A V, Oida S. Graphene Radio Frequency Receiver Integrated Circuit[J]. Nat Commun, 2014,5(1)3086. doi: 10.1038/ncomms4086
Seul K H, Choong S K, Wan S H. Hybrid Integration of Graphene Analog and Silicon Complementary Metal-Oxide-Semiconductor Digital Circuits[J]. ACS Nano, 2016,10(7):7142-7146. doi: 10.1021/acsnano.6b03382
Ma R, Chen Q, Zhang W. A Dual-Polarity Graphene NEMS Switch ESD Protection Structure[J]. IEEE Electron Device Lett, 2016,37(5):674-676. doi: 10.1109/LED.2016.2544343
CHAI Zheng. Study on Field Effect Transistors Based on CVD-grown Graphene[D]. Xi'an: Xidian University, 2014 (in Chinese).
WANG Chong, LIU Yurong. Research Progress on Graphene-Based Field Effect Transistor[J]. Semicond Technol, 2016(8):561-569.
Wang H, Nezich D, Kong J. Graphene Frequency Multipliers[J]. IEEE Electron Device Lett, 2009,30(5):547-549. doi: 10.1109/LED.2009.2016443
Lin Y M, Dimitrakopoulos C, Jenkins K A. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene[J]. Science, 2010,327(5966):662-662. doi: 10.1126/science.1184289
Wu Y, Lin Y M, Bol A A. High-Frequency, Scaled Graphene Transistors on Diamond-Like Carbon[J]. Nature, 2011,472(7341):74-78. doi: 10.1038/nature09979
Cheng R, Bai J, Liao L. High-Frequency Self-aligned Graphene Transistors with Transferred Gate Stacks[J]. Proc Nat Acad Sci USA, Early Ed, 2012,109(29):11588-11592. doi: 10.1073/pnas.1205696109
Guo Z, Dong R, Chakraborty P S. Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors[J]. Nano Lett, 2013,13(3):942-947. doi: 10.1021/nl303587r
Feng Z H, Yu C, Li J. An Ultra Clean Self-aligned Process for High Maximum Oscillation Frequency Graphene Transistors[J]. Carbon, 2014,75(10):249-254.
Wu Y, Zou X, Sun M. 200 GHz Maximum Oscillation Frequency in CVD Graphene Radio Frequency Transistors[J]. ACS Appl Mater Interfaces, 2016,8(39):25645-25649. doi: 10.1021/acsami.6b05791
Novoselov K S, Geim A K, Morozov S V. Two-Dimensional Gas of Massless Dirac Fermions in Graphene[J]. Nature, 2005,438(7065):197-200. doi: 10.1038/nature04233
Wessely P J, Wessely F, Birinci E. Silicon-CMOS Compatible In-Situ CCVD Grown Graphene Transistors with Ultra-high On/Off-Current Ratio[J]. Phys E(Amsterdam, Neth), 2012,44(7/8):1132-1135.
Wessely A P J, Schwalke U. 2nd Generation Bilayer Graphene Transistors for Applications in Nanoelectronics[C]//IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era. IEEE, 2014: 1-3.
Si Y L, Duong D L, Vu Q A. Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio[J]. ACS Nano, 2015,9(9):9034-9042. doi: 10.1021/acsnano.5b03130
Dragoman M, Dinescu A, Dragoman D. Room Temperature Nanostructured Graphene Transistor with High On/Off Ratio[J]. Nanotechnology, 2016,28015201.
Dragoman M, Dinescu A, Dragoman D. Solving the Graphene Electronics Conundrum:High Mobility and High On-Off Ratio in Graphene Nanopatterned Transistors[J]. Phys E(Amsterdam, Neth), 2018,97:296-301. doi: 10.1016/j.physe.2017.12.011
DAO Xiumei. Study on Buffer Layer of Tungsten Trioxide for OLED[D]. Shanghai: Fudan University, 2012(in Chinese).
Wu J, Agrawal M, Becerril H A. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes[J]. ACS Nano, 2010,4(1):43-48. doi: 10.1021/nn900728d
CHEN Weihua. Highly Efficient Green Phosphorescent Organic Light-Emitting Devices Based on p-Type Doping Hole Transporting Layer[D]. Taiyuan: Taiyuan University of Technology, 2017(in Chinese).
Meyer J, Kidambi P R, Bayer B C. Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes[J]. Sci Rep, 2014,45380.
Kwon K C, Choi K S, Kim S Y. Increased Work Function in Few-Layer Graphene Sheets via Metal Chloride Doping[J]. Adv Funct Mater, 2012,22(22):4724-4731. doi: 10.1002/adfm.v22.22
Kim D, Lee D, Lee Y. Work-Function Engineering of Graphene Anode by Bis(trifluoromethanesulfonyl)amide Doping for Efficient Polymer Light-Emitting Diodes[J]. Adv Funct Mater, 2013,23(40):5049-5055. doi: 10.1002/adfm.v23.40
Han T H, Kwon S J, Li N. Versatile p-Type Chemical Doping to Achieve Ideal Flexible Graphene Electrodes[J]. Angew Chem Int Ed Engl, 2016,128(21):6305-6309. doi: 10.1002/ange.201600414
D'Arsiè L, Esconjauregui S, Weatherup R. Stable and Efficient p-Type Doping of Graphene by Nitric Acid[J]. RSC Adv, 2016,6(114):113185-113192. doi: 10.1039/C6RA23727D
Wu T L, Yeh C H, Hsiao W T. High-Performance Organic Light-Emitting Diode with Substitutionally Boron-Doped Graphene Anode[J]. ACS Appl Mater Interfaces, 2017,9(17):14998-15004. doi: 10.1021/acsami.7b03597
Cha M J, Song W, Kim Y. Long-Term Air-Stable n-Type Doped Graphene by Multiple Lamination with Polyethyleneimine[J]. RSC Adv, 2014,4(71):37849-37853. doi: 10.1039/C4RA04518A
Sanders S, Cabrero-Vilatela A, Kidambi P R. Engineering High Charge Transfer n-Doping of Graphene Electrodes and Its Application to Organic Electronics[J]. Nanoscale, 2015,7(30):13135-13142. doi: 10.1039/C5NR03246F
Zhuo Q Q, Wang Q, Zhang Y P. Transfer-Free Synthesis of Doped and Patterned Graphene Films[J]. ACS Nano, 2015,9(1):594-601. doi: 10.1021/nn505913v
Chang J H, Lin W H, Wang P C. Solution-Processed Transparent Blue Organic Light-Emitting Diodes with Graphene as the Top Cathode[J]. Sci Rep, 2015,59693. doi: 10.1038/srep09693
Kwon S J, Han T H, Kim Y H. Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes[J]. ACS Appl Mater Interfaces, 2018,10(5):4874-4881. doi: 10.1021/acsami.7b15307
Schedin F, Geim A K, Morozov S V. Detection of Individual Gas Molecules Adsorbed on Graphene[J]. Nat Mater, 2006,6(9):652-655.
Fowler J D, Allen M J, Tung V C. Practical Chemical Sensors from Chemically Derived Graphene[J]. ACS Nano, 2009,3(2):301-306. doi: 10.1021/nn800593m
Wang Z, Zhao C, Han T. High-Performance Reduced Graphene Oxide-Based Room-Temperature NO2, Sensors:A Combined Surface Modification of SnO2, Nanoparticles and Nitrogen Doping Approach[J]. Sens Actuators B, 2017,242:269-279. doi: 10.1016/j.snb.2016.10.101
Zou J F, Liu Z G, Guo Y J. Electrochemical Sensor for the Facile Detection of Trace Amounts of Bisphenol a Based on Cyclodextrin-Functionalized Graphene/Platinum Nanoparticles[J]. Anal Methods, 2017,9(1):134-140. doi: 10.1039/C6AY02719A
Sakthinathan S, Kubendhiran S, Chen S. Metallated Porphyrin Noncovalent Interaction with Reduced Graphene Oxide-Modified Electrode for Amperometric Detection of Environmental Pollutant Hydrazine[J]. Appl Organomet Chem, 2017,31(9):1-10.
Seekaew Y, Phokharatkul D, Wisitsoraat A. Highly Sensitive and Selective Room-Temperature NO2, Gas Sensor Based on Bilayer Transferred Chemical Vapor Deposited Graphene[J]. Appl Surf Sci, 2017,404:357-363. doi: 10.1016/j.apsusc.2017.01.286
Guo L, Kou X, Ding M. Reduced Graphene Oxide/α-Fe2O3, Composite Nanofibers for Application in Gas Sensors[J]. Sens Actuators B, 2017,244:233-242. doi: 10.1016/j.snb.2016.12.137
Luan F, Zhang S, Chen D. CoS2-Decorated Ionic Liquid-Functionalized Graphene as a Novel Hydrazine Electrochemical Sensor[J]. Talanta, 2018,182:529-535. doi: 10.1016/j.talanta.2018.02.031
Chu J, Wang X, Wang D. Highly Selective Detection of Sulfur Hexafluoride Decomposition Components H2S and SOF2, Employing Sensors Based on Tin Oxide Modified Reduced Graphene Oxide[J]. Carbon, 2018,135:95-103. doi: 10.1016/j.carbon.2018.04.037
Rumyantsev S, Liu G, Shur M S. Selective Gas Sensing with a Single Pristine Graphene Transistor[J]. Nano Lett, 2012,12(5):2294-2298. doi: 10.1021/nl3001293
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
(a)Gate electrode and gate dielectric above grapheme; (b)Gate electrode and gate dielectric below graphene
1.Starting substrate; 2.Insulating layer; 3.Monolayer graphene; 4.Gate dielectric laye; 5.Gate electrode layer; 6.Source/drain contacts; 7.Conductive pad structures