Citation: HUO Ran, WU Yuxuan, YANG Yu, PIAO Shuqing, ZHANG Zhicheng, XIAO Jihai, SHI Ling. Research Progress in Graphene Electronic Devices[J]. Chinese Journal of Applied Chemistry, ;2019, 36(3): 245-258. doi: 10.11944/j.issn.1000-0518.2019.03.180305 shu

Research Progress in Graphene Electronic Devices

  • Corresponding author: SHI Ling, shiling@mail.buct.edu.cn
  • Received Date: 14 September 2018
    Revised Date: 16 November 2018
    Accepted Date: 17 December 2018

Figures(7)

  • Graphene is a two-dimensional material with excellent properties such as good electrical and thermal conductivity, high carrier mobility, and good transmissivity endowed by its sp2 hybrid planar honeycomb structure. It shows great application prospect in electronic devices. This article reviewed the research progress in the application of graphene in integrated circuits, graphene field effect transistors, graphene organic light-emitting diodes, and chemical sensors.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    2. [2]

      Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958,80(6):1339-1339. doi: 10.1021/ja01539a017

    3. [3]

      Reina A, Jia X, Ho J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition[J]. Nano Lett, 2009,9(1):30-35. doi: 10.1021/nl801827v

    4. [4]

      Kageshima H, Hibino H, Nagase M. Theoretical Study of Epitaxial Graphene Growth on SiC(0001) Surfaces[J]. Appl Phys Express, 2009,2(6)5502.  

    5. [5]

      Ping G, Zhang J, Cheng J. Graphene Nanosheets Prepared by Low-Temperature Exfoliation and Reduction Technique Toward Fabrication of High-Performance Poly(1-butene)/graphene Films[J]. Iran Polym J, 2016,26(1):1-15.  

    6. [6]

      Liang K, Shi L, Zhang J. Fabrication of Shape-Stable Composite Phase Change Materials Based on Lauric Acid and Graphene/Graphene Oxide Complex Aerogels for Enhancement of Thermal Energy Storage and Electrical Conduction[J]. Thermochim Acta, 2018,664:1-15. doi: 10.1016/j.tca.2018.04.002

    7. [7]

      Lee C, Wei X, Kysar J W. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J]. Science, 2008,321(5887):385-388. doi: 10.1126/science.1157996

    8. [8]

      Chen J H, Jang C, Xiao S D. Intrinsic and Extrinsic Performance Limits of Graphene Deviceson SiO2[J]. Nat Nanotechnol, 2008,3(4):206-209. doi: 10.1038/nnano.2008.58

    9. [9]

      Balandin A A, Ghosh S, Bao W. Superior Thermal Conductivity of Single-Layer Graphene[J]. Nano Lett, 2008,8(3):902-907. doi: 10.1021/nl0731872

    10. [10]

      Nair R R, Blake P, Grigorenko A N. Fine Structure Constant Defines Visual Tranparency of Graphene[J]. Science, 2008,320(5881)1308. doi: 10.1126/science.1156965

    11. [11]

      Lin Y M, Valdes-Garcia A, Han S J. Wafer-Scale Graphene Integrated Circuit[J]. Science, 2011,332(6035):1294-1297. doi: 10.1126/science.1204428

    12. [12]

      Guo D, Hen S J, Lin C H, et al. Graphene Based Three-Dimensional Integrated Circuit Device: US, US8895372[P]. 2014.

    13. [13]

      Pak J S, Pathak M, Lim S K, et al. Modeling of Electromigration in Through-Silicon-Via Based 3D IC[C]//Electronic Components and Technology Conference. IEEE, 2011, 301(4): 1420-1427.

    14. [14]

      Chiariello A G, Maffucci A, Miano G. Modeling Carbon Nanotube Bundles for Future On-Chip Nano-interconnects[C]//Electrical Design of Advanced Packaging and Systems Symposium. IEEE, 2011: 1-4.

    15. [15]

      Hossain N M, Hossain M, Yousuf A H B, et al. Thermal Aware Graphene Based Through Silicon via Design for 3D IC[C]//3D Systems Integration Conference. IEEE, 2013: 1-4.

    16. [16]

      BAN Tao, PAN Zhongliang, CHEN Ling. Study on Heat Dissipation Method of Three-Dimensional Integrated Circuit Using Graphene Heat Conduction Layer[J]. Electron Technol Software Eng, 2018(5):99-101.  

    17. [17]

      Y·DU. Three-Dimensional(3D) Integrated Circuit(3DIC) with Graphene Shield and Related Manufacturing Methods: CN 104981899 A[P]. 2015(in Chinese). Y·

    18. [18]

      Han S J, Garcia A V, Oida S. Graphene Radio Frequency Receiver Integrated Circuit[J]. Nat Commun, 2014,5(1)3086. doi: 10.1038/ncomms4086

    19. [19]

      Seul K H, Choong S K, Wan S H. Hybrid Integration of Graphene Analog and Silicon Complementary Metal-Oxide-Semiconductor Digital Circuits[J]. ACS Nano, 2016,10(7):7142-7146. doi: 10.1021/acsnano.6b03382

    20. [20]

      Ma R, Chen Q, Zhang W. A Dual-Polarity Graphene NEMS Switch ESD Protection Structure[J]. IEEE Electron Device Lett, 2016,37(5):674-676. doi: 10.1109/LED.2016.2544343

    21. [21]

      CHAI Zheng. Study on Field Effect Transistors Based on CVD-grown Graphene[D]. Xi'an: Xidian University, 2014 (in Chinese). 

    22. [22]

      WANG Chong, LIU Yurong. Research Progress on Graphene-Based Field Effect Transistor[J]. Semicond Technol, 2016(8):561-569.  

    23. [23]

      Wang H, Nezich D, Kong J. Graphene Frequency Multipliers[J]. IEEE Electron Device Lett, 2009,30(5):547-549. doi: 10.1109/LED.2009.2016443

    24. [24]

      Lin Y M, Dimitrakopoulos C, Jenkins K A. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene[J]. Science, 2010,327(5966):662-662. doi: 10.1126/science.1184289

    25. [25]

      Wu Y, Lin Y M, Bol A A. High-Frequency, Scaled Graphene Transistors on Diamond-Like Carbon[J]. Nature, 2011,472(7341):74-78. doi: 10.1038/nature09979

    26. [26]

      Cheng R, Bai J, Liao L. High-Frequency Self-aligned Graphene Transistors with Transferred Gate Stacks[J]. Proc Nat Acad Sci USA, Early Ed, 2012,109(29):11588-11592. doi: 10.1073/pnas.1205696109

    27. [27]

      Guo Z, Dong R, Chakraborty P S. Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors[J]. Nano Lett, 2013,13(3):942-947. doi: 10.1021/nl303587r

    28. [28]

      Feng Z H, Yu C, Li J. An Ultra Clean Self-aligned Process for High Maximum Oscillation Frequency Graphene Transistors[J]. Carbon, 2014,75(10):249-254.  

    29. [29]

      Wu Y, Zou X, Sun M. 200 GHz Maximum Oscillation Frequency in CVD Graphene Radio Frequency Transistors[J]. ACS Appl Mater Interfaces, 2016,8(39):25645-25649. doi: 10.1021/acsami.6b05791

    30. [30]

      Novoselov K S, Geim A K, Morozov S V. Two-Dimensional Gas of Massless Dirac Fermions in Graphene[J]. Nature, 2005,438(7065):197-200. doi: 10.1038/nature04233

    31. [31]

      Wessely P J, Wessely F, Birinci E. Silicon-CMOS Compatible In-Situ CCVD Grown Graphene Transistors with Ultra-high On/Off-Current Ratio[J]. Phys E(Amsterdam, Neth), 2012,44(7/8):1132-1135.  

    32. [32]

      Wessely A P J, Schwalke U. 2nd Generation Bilayer Graphene Transistors for Applications in Nanoelectronics[C]//IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era. IEEE, 2014: 1-3.

    33. [33]

      Si Y L, Duong D L, Vu Q A. Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio[J]. ACS Nano, 2015,9(9):9034-9042. doi: 10.1021/acsnano.5b03130

    34. [34]

      Dragoman M, Dinescu A, Dragoman D. Room Temperature Nanostructured Graphene Transistor with High On/Off Ratio[J]. Nanotechnology, 2016,28015201.  

    35. [35]

      Dragoman M, Dinescu A, Dragoman D. Solving the Graphene Electronics Conundrum:High Mobility and High On-Off Ratio in Graphene Nanopatterned Transistors[J]. Phys E(Amsterdam, Neth), 2018,97:296-301. doi: 10.1016/j.physe.2017.12.011

    36. [36]

      DAO Xiumei. Study on Buffer Layer of Tungsten Trioxide for OLED[D]. Shanghai: Fudan University, 2012(in Chinese). 

    37. [37]

      Wu J, Agrawal M, Becerril H A. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes[J]. ACS Nano, 2010,4(1):43-48. doi: 10.1021/nn900728d

    38. [38]

      CHEN Weihua. Highly Efficient Green Phosphorescent Organic Light-Emitting Devices Based on p-Type Doping Hole Transporting Layer[D]. Taiyuan: Taiyuan University of Technology, 2017(in Chinese). 

    39. [39]

      Meyer J, Kidambi P R, Bayer B C. Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes[J]. Sci Rep, 2014,45380.  

    40. [40]

      Kwon K C, Choi K S, Kim S Y. Increased Work Function in Few-Layer Graphene Sheets via Metal Chloride Doping[J]. Adv Funct Mater, 2012,22(22):4724-4731. doi: 10.1002/adfm.v22.22

    41. [41]

      Kim D, Lee D, Lee Y. Work-Function Engineering of Graphene Anode by Bis(trifluoromethanesulfonyl)amide Doping for Efficient Polymer Light-Emitting Diodes[J]. Adv Funct Mater, 2013,23(40):5049-5055. doi: 10.1002/adfm.v23.40

    42. [42]

      Han T H, Kwon S J, Li N. Versatile p-Type Chemical Doping to Achieve Ideal Flexible Graphene Electrodes[J]. Angew Chem Int Ed Engl, 2016,128(21):6305-6309. doi: 10.1002/ange.201600414

    43. [43]

      D'Arsiè L, Esconjauregui S, Weatherup R. Stable and Efficient p-Type Doping of Graphene by Nitric Acid[J]. RSC Adv, 2016,6(114):113185-113192. doi: 10.1039/C6RA23727D

    44. [44]

      Wu T L, Yeh C H, Hsiao W T. High-Performance Organic Light-Emitting Diode with Substitutionally Boron-Doped Graphene Anode[J]. ACS Appl Mater Interfaces, 2017,9(17):14998-15004. doi: 10.1021/acsami.7b03597

    45. [45]

      Cha M J, Song W, Kim Y. Long-Term Air-Stable n-Type Doped Graphene by Multiple Lamination with Polyethyleneimine[J]. RSC Adv, 2014,4(71):37849-37853. doi: 10.1039/C4RA04518A

    46. [46]

      Sanders S, Cabrero-Vilatela A, Kidambi P R. Engineering High Charge Transfer n-Doping of Graphene Electrodes and Its Application to Organic Electronics[J]. Nanoscale, 2015,7(30):13135-13142. doi: 10.1039/C5NR03246F

    47. [47]

      Zhuo Q Q, Wang Q, Zhang Y P. Transfer-Free Synthesis of Doped and Patterned Graphene Films[J]. ACS Nano, 2015,9(1):594-601. doi: 10.1021/nn505913v

    48. [48]

      Chang J H, Lin W H, Wang P C. Solution-Processed Transparent Blue Organic Light-Emitting Diodes with Graphene as the Top Cathode[J]. Sci Rep, 2015,59693. doi: 10.1038/srep09693

    49. [49]

      Kwon S J, Han T H, Kim Y H. Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes[J]. ACS Appl Mater Interfaces, 2018,10(5):4874-4881. doi: 10.1021/acsami.7b15307

    50. [50]

      Schedin F, Geim A K, Morozov S V. Detection of Individual Gas Molecules Adsorbed on Graphene[J]. Nat Mater, 2006,6(9):652-655.  

    51. [51]

      Fowler J D, Allen M J, Tung V C. Practical Chemical Sensors from Chemically Derived Graphene[J]. ACS Nano, 2009,3(2):301-306. doi: 10.1021/nn800593m

    52. [52]

      Wang Z, Zhao C, Han T. High-Performance Reduced Graphene Oxide-Based Room-Temperature NO2, Sensors:A Combined Surface Modification of SnO2, Nanoparticles and Nitrogen Doping Approach[J]. Sens Actuators B, 2017,242:269-279. doi: 10.1016/j.snb.2016.10.101

    53. [53]

      Zou J F, Liu Z G, Guo Y J. Electrochemical Sensor for the Facile Detection of Trace Amounts of Bisphenol a Based on Cyclodextrin-Functionalized Graphene/Platinum Nanoparticles[J]. Anal Methods, 2017,9(1):134-140. doi: 10.1039/C6AY02719A

    54. [54]

      Sakthinathan S, Kubendhiran S, Chen S. Metallated Porphyrin Noncovalent Interaction with Reduced Graphene Oxide-Modified Electrode for Amperometric Detection of Environmental Pollutant Hydrazine[J]. Appl Organomet Chem, 2017,31(9):1-10.  

    55. [55]

      Seekaew Y, Phokharatkul D, Wisitsoraat A. Highly Sensitive and Selective Room-Temperature NO2, Gas Sensor Based on Bilayer Transferred Chemical Vapor Deposited Graphene[J]. Appl Surf Sci, 2017,404:357-363. doi: 10.1016/j.apsusc.2017.01.286

    56. [56]

      Guo L, Kou X, Ding M. Reduced Graphene Oxide/α-Fe2O3, Composite Nanofibers for Application in Gas Sensors[J]. Sens Actuators B, 2017,244:233-242. doi: 10.1016/j.snb.2016.12.137

    57. [57]

      Luan F, Zhang S, Chen D. CoS2-Decorated Ionic Liquid-Functionalized Graphene as a Novel Hydrazine Electrochemical Sensor[J]. Talanta, 2018,182:529-535. doi: 10.1016/j.talanta.2018.02.031

    58. [58]

      Chu J, Wang X, Wang D. Highly Selective Detection of Sulfur Hexafluoride Decomposition Components H2S and SOF2, Employing Sensors Based on Tin Oxide Modified Reduced Graphene Oxide[J]. Carbon, 2018,135:95-103. doi: 10.1016/j.carbon.2018.04.037

    59. [59]

      Rumyantsev S, Liu G, Shur M S. Selective Gas Sensing with a Single Pristine Graphene Transistor[J]. Nano Lett, 2012,12(5):2294-2298. doi: 10.1021/nl3001293

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(45)
  • Abstract views(2212)
  • HTML views(709)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return