Research Progress on Organic Fluorescent Probes for Single Molecule Localization Microscopy
- Corresponding author: YANG Zhigang, zhgyang@szu.edu.cn
Citation:
PAN Wenhui, LI Wen, QU Jinghan, YE Yipei, QU Junle, YANG Zhigang. Research Progress on Organic Fluorescent Probes for Single Molecule Localization Microscopy[J]. Chinese Journal of Applied Chemistry,
;2019, 36(3): 269-281.
doi:
10.11944/j.issn.1000-0518.2019.03.180249
Abbe E. Beitrage zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung[J]. Arch Mikroskop Anat, 1873,9(1):413-420. doi: 10.1007/BF02956173
Klein T, Proppert S, Sauer M. Eight Years of Single Molecule Localization Microscopy[J]. Histochem Cell Biol, 2014,141(6):561-575. doi: 10.1007/s00418-014-1184-3
Hell S W, Wichmann J. Breaking the Diffraction Resolution Limit by Stimulated Emission:Stimulated Emission Depletion Microscopy[J]. Opt Lett, 1994,19(11):780-782. doi: 10.1364/OL.19.000780
Rittweger E, Han K Y, Irvine S E. STED Microscopy Reveals Crystal Colourcentres with Nanometric Resolution[J]. Nat Photonics, 2009,3(3):144-147. doi: 10.1038/nphoton.2009.2
Yang Z, Sharma A, Qi J. Super-Resolution Fluorescent Materials:An Insight into Design and Bioimaging Applications[J]. Chem Soc Rev, 2016,45(17):4651-4667. doi: 10.1039/C5CS00875A
Bretschneider S, Eggeling C, Hell S W. Breaking the Diffraction Barrier in Fluorescence Microscopy by Optical Shelving[J]. Phys Rev Lett, 2007,98(21)218103. doi: 10.1103/PhysRevLett.98.218103
Hofmann M, Eggeling C, Jakobs S. Breaking the Diffraction Barrier in Fluorescence Microscopy at Low Light Intensities by Using Reversibly Photoswitchable Proteins[J]. Proc Natl Acad Sci, 2005,102(49)17565. doi: 10.1073/pnas.0506010102
Gustafsson M G L. Nonlinear Structured-Illumination Microscopy:Wide-Field Fluorescence Imaging with Theoretically Unlimited Resolution[J]. Proc Natl Acad Sci USA, 2005,102(37)13081. doi: 10.1073/pnas.0406877102
Shroff H, Galbraith C G, Galbraith J A. Live-Cell Photoactivated Localization Microscopy of Nanoscale Adhesion Dynamics[J]. Nat Methods, 2008,5(5):417-423. doi: 10.1038/nmeth.1202
Rust M J, Bates M, Zhuang X. Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy(STORM)[J]. Nat Methods, 2006,3(10):793-796. doi: 10.1038/nmeth929
Sharonov A, Hochstrasser R M. Wide-Field Subdiffraction Imaging by Accumulated Binding of Diffusing Probes[J]. Proc Natl Acad Sci USA, 2006,103(50):18911-18916. doi: 10.1073/pnas.0609643104
Heilemann M, van de Linde S, Schüttpelz M. Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes[J]. Angew Chem Int Ed, 2008,47(33):6172-6176. doi: 10.1002/anie.v47:33
Dempsey G T, Vaughan J C, Chen K H. Evaluation of Fuorophores for Optimal Performance in Localization-Based Super-Resolution Imaging[J]. Nat Methods, 2011,8(12):1027-1040. doi: 10.1038/nmeth.1768
Heilemann M, Margeat E, Kasper R. Carbocyanine Dyes as Efficient Reversible Single-Molecule Optical Switch[J]. J Am Chem Soc, 2005,127(11):3801-3806. doi: 10.1021/ja044686x
Bates M, Blosser T R, Zhuang X. Short-Range Spectroscopic Ruler Based on a Single-Molecule Optical Switch[J]. Phys Rev Lett, 2005,94(10)108101. doi: 10.1103/PhysRevLett.94.108101
Dempsey G T, Bates M, Kowtoniuk W E. Photoswitching Mechanism of Cyanine Dyes[J]. J Am Chem Soc, 2009,131(51):18192-18193. doi: 10.1021/ja904588g
Vaughan J C, Dempsey G T, Sun E. Phosphine Quenching of Cyanine Dyes as a Versatile Tool for Fluorescence Microscopy[J]. J Am Chem Soc, 2013,135(4):1197-1200. doi: 10.1021/ja3105279
Heilemann M, van de Linde S, Mukherjee A. Super-Resolution Imaging with Small Organic Fluorophores[J]. Angew Chem Int Ed, 2009,48(37):6903-6908. doi: 10.1002/anie.v48:37
van de Linde S, Sauer M. How to Switch a Fluorophore:From Undesired Blinking to Controlled Photoswitching[J]. Chem Soc Rev, 2014,43(4):1076-1087. doi: 10.1039/C3CS60195A
Kottke T, van de Linde S, Sauer M. Identification of the Product of Photoswitching of an Oxazine Fluorophore Using Fourier Transform Infrared Difference Spectroscopy[J]. J Phys Chem Lett, 2010,1(21):3156-3159. doi: 10.1021/jz101300t
Vaughan J C, Jia S, Zhuang X. Ultrabright Photoactivatable Fluorophores Created by Reductive Caging[J]. Nat Methods, 2012,9(12):1181-1184. doi: 10.1038/nmeth.2214
Bates M, Huang B, Dempsey G T. Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes[J]. Science, 2007,317(5845):1749-1753. doi: 10.1126/science.1146598
Huang B, Jones S A, Brandenburg B. Whole-Cell 3D STORM Reveals Interactions Between Cellular Structures with Nanometer-Scale Resolution[J]. Nat Methods, 2008,5(12):1047-1052. doi: 10.1038/nmeth.1274
Bates M, Dempsey G T, Chen K H. Multicolor Super-Resolution Fluorescence Imaging via Multi-parameter Fluorophore Detection[J]. Chem Phys Chem, 2012,13(1):99-107.
van de Linde S, Endesfelder U, Mukherjee A. Multicolor Photoswitching Microscopy for Subdiffraction-Resolution Fluorescence Imaging[J]. Photobio Sci, 2009,8(4):465-469. doi: 10.1039/b822533h
Lehmann M, Gottschalk B, Puchkov D. Multicolor Caged dSTORM Resolves the Ultrastructure of Synaptic Vesicles in the Brain[J]. J Angew Chem Int Ed, 2015,54(45):13230-13235. doi: 10.1002/anie.201505138
Wombacher R, Heidbreder M, van de Linde S. Live-Cell Super-Resolution Imaging with Trimethoprim Conjugates[J]. Nat Methods, 2010,7(9):717-719. doi: 10.1038/nmeth.1489
Benke A, Manley S. Live-Cell dSTORM of Cellular DNA Based on Direct DNA Labeling[J]. Chem Bio Chem, 2012,13(2):298-301. doi: 10.1002/cbic.201100679
Shim S H, Xia C, Zhong G. Super-resolution Fluorescence Imaging of Organelles in Live Cells with Photoswitchable Membrane Probes[J]. Proc Natl Acad Sci USA, 2012,109(35):13978-13983. doi: 10.1073/pnas.1201882109
Lukinavičius G, Umezawa K, Olivier N. A Near-Infrared Fluorophore for Live-Cell Super-Resolution Microscopy of Cellular Proteins[J]. Nat Chem, 2013,5(2):132-139. doi: 10.1038/nchem.1546
Uno S, Kamiya M, Yoshihara T. A Spontaneously Blinking Fluorophore Based on Intramolecular Spirocyclization for Live-Cell Super-resolution Imaging[J]. Nat Chem, 2014,6(8):681-689. doi: 10.1038/nchem.2002
Lee H D, Lord S J, Iwanaga S. Superresolution Imaging of Targeted Proteins in Fixed and Living Cells Using Photoactivatable Organic Fluorophores[J]. J Am Chem Soc, 2010,132(43):15099-15101. doi: 10.1021/ja1044192
Fölling J, Belov V, Kunetsky R. Photochromic Rhodamines Provide Nanoscopy with Optical Sectioning[J]. Angew Chem Int Ed, 2007,46(33):6266-6270. doi: 10.1002/anie.v46:33
Huang B, Wang W Q, Bates M. Three-Dimensional Super-resolution Imaging by Stochastic Optical Reconstruction Microscopy[J]. Science, 2008,319(5864):810-813. doi: 10.1126/science.1153529
Lee M K, Rai P, Williams J. Small-Molecule Labeling of Live Cell Surfaces for Three-Dimensional Super-resolution Microscopy[J]. J Am Chem Soc, 2014,136(40):14003-14006. doi: 10.1021/ja508028h
Halabi E A, Thiel Z, Trapp N. A Photoactivatable Probe for Super-resolution Imaging of Enzymatic Activity in Live Cells[J]. J Am Chem Soc, 2017,139(37):13200-13207. doi: 10.1021/jacs.7b07748
Banala S, Maurel D, Manley S. A Caged, Localizable Rhodamine Derivative for Superresolution Microscopy[J]. ACS Chem Biol, 2012,7(2):289-293. doi: 10.1021/cb2002889
Grimm J B, Sung A J, Legant W R. Carbofluoresceins and Carborhodamines as Scaffolds for High Contrast Fluorogenic Probes[J]. ACS Chem Biol, 2013,8(6):1303-1310. doi: 10.1021/cb4000822
Grimm J B, Klein T, Kopek B G. Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-resolution Microscopy[J]. Angew Chem Int Ed, 2016,55(5):1723-1727. doi: 10.1002/anie.201509649
Nevskyi O, Sysoiev D, Oppermann A. Nanoscopic Visualization of Soft Matter Using Fluorescent Diarylethene Photoswitches[J]. Angew Chem Int Ed, 2016,55(41):12698-12702. doi: 10.1002/anie.201606791
Zhang H, Wang C, Jiang T. Microtubule-Targetable Fluorescent Probe:Site-Specific Detection and Super-Resolution Imaging of Ultrace Tubulin in Microtubules of Living Cancer Cells[J]. Anal Chem, 2015,87(10):5216-5222. doi: 10.1021/acs.analchem.5b01089
Hua Q, Xin B, Xiong Z. Super-resolution Imaging of Self-assembly of Amphiphilic Photoswitchable Macrocycles[J]. Chem Commun, 2017,53(18):2669-2672. doi: 10.1039/C7CC00044H
He H, Ye Z, Xiao Y. Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide[J]. Anal Chem, 2018,90(3):2164-2169. doi: 10.1021/acs.analchem.7b04510
Gu X, Zhao E, Zhao T. Mitochondrion-Specific Photoactivatable Fluorescence Turn-On AIE-Based Bioprobe for Localization Super-Resolution Mic/roscope[J]. Adv Mater, 2016,28(25):5064-507. doi: 10.1002/adma.201505906
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
Zhifeng CAI , Ying WU , Yanan LI , Guiyu MENG , Tianyu MIAO , Yihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
(a)Mechanism of photochemical activation progress of Cy5 in buffer systems including mercapto-containing compounds or phosphine-containing compounds[17]; (b)Molecular structure and spectral frequency band of commercial rhodamine derivatives and (c)their mechanism of photoluminescence[18-19]; (d)Molecular structure and photoluminescence of oxazine dye[20]