Citation: ZHANG Bin, Sun Xuejiao, LÜ Chengwei, YU Shijun. Synthesis and Fluorescent Properties of Polyesters Containing 8-Hydroxyquinoline Side Groups and Their Zn(Ⅱ) and Al(Ⅲ) Complexes[J]. Chinese Journal of Applied Chemistry, ;2019, 36(3): 306-313. doi: 10.11944/j.issn.1000-0518.2019.03.180229 shu

Synthesis and Fluorescent Properties of Polyesters Containing 8-Hydroxyquinoline Side Groups and Their Zn(Ⅱ) and Al(Ⅲ) Complexes

  • Corresponding author: YU Shijun, sjyu@lnnu.edu.cn
  • Received Date: 29 June 2018
    Revised Date: 6 August 2018
    Accepted Date: 29 August 2018

    Fund Project: the National Natural Science Foundation of China 21403100Supported by the National Natural Science Foundation of China(No.21403100), the Science Research Project of the Department of Education of Liaoning Province(No.L2012383)the Science Research Project of the Department of Education of Liaoning Province L2012383

Figures(9)

  • Three kinds of novel polyesters containing 8-hydroxyquinoline side groups(P7~P9) were synthesized, and subsequently their zinc complexes(P7-Zn~P9-Zn) and aluminum complexes(P7-Al~P9-Al) were obtained by reactions with zinc acetate and aluminum chloride, respectively. The structures and properties of polyesters and their metal complexes were characterized by elemental analysis, infrared(IR), ultraviolet-visable spectroscopy(UV-Vis), proton nuclear magnetic resonance(1H NMR), gel permeation chromatography(GPC), thermogravimetric analysis(TG), differential scanning calorimetry(DSC) and fluorescence spectroscopy. The polyesters obtained are soluble in N, N-dimethyl formamide(DMF), N, N-dimethyl acetamide(DMAC), dimethylsulfoxide(DMSO), and N-methyl pyrrolidone(NMP). Complexes P7-Zn~P9-Zn and P7-Al~P9-Al can be partially dissolved in DMF, DMAC, DMSO and NMP. The Mw and polydispersity index(PDI) of P7~P9 are 1.79×104, 2.14×104 and 2.52×104 g/mol and 1.54, 1.64 and 1.72, respectively. The 5% mass loss temperatures of P7~P9, P7-Zn~P9-Zn and P7-Al~P9-Al are 291.6, 291.3, 284.9, 348.7, 339.2, 334.6, 316.1, 316.7 and 316.0℃, respectively. The glass transition temperatures(Tg) of P7~P9 are 121.8, 106.2 and 91.3℃, respectively, and Tg of their metal complexes are all higher than 180℃. Fluorescence emission peaks of P7~P9 in DMF solution appear at 413~418 nm, emitting weak purple light. Fluorescence emission peaks of P7-Zn~P9-Zn and P7-Al~P9-Al in DMF solution emerged at 509~513 and 485~487 nm, respectively, emitting strong green light, Fluorescence emission peaks of P7-Zn~P9-Zn and P7-Al~P9-Al in solid state located at 516~519 and 492~497 nm, respectively, emitting strong green light. The fluorescence quantum yields of P7~P9, P7-Zn~P9-Zn and P7-Al~P9-Al are 5.5%~8.4%, 21%~28% and 23%~29%, respectively.
  • 加载中
    1. [1]

      Tang C W, Vanslyke S A. Organic Electroluminescent Diodes[J]. Appl Phys Lett, 1989,51(12):913-915.  

    2. [2]

      Tolkki A, Kaunisto K, Heiskanen J P. Organometallic Tris(8-Hydroxyquinoline)aluminum Complexes as Buffer Layers and Dopants in Inverted Organic Solar Cells[J]. Thin Solid Films, 2012,520(13):4475-4481. doi: 10.1016/j.tsf.2012.02.084

    3. [3]

      Chang Y F, Meng H F, Fan G L. Blade Coating of Tris(8-Hydroxyquinolinato)aluminum as the Electron-Transport Layer for All-Solution Blue Fluorescent Organic Light-Emitting Diodes[J]. Org Electron, 2016,29:99-106. doi: 10.1016/j.orgel.2015.10.026

    4. [4]

      Shi J, Gong C, Zeng X. Three Multinuclear Metal-Organic Coordination Compounds Based on 8-Hydroxyquinoline Derivative:Syntheses, Structures and Fluorescence Properties[J]. Polyhedron, 2015,102:562-568. doi: 10.1016/j.poly.2015.10.002

    5. [5]

      Muhammad F F, Yahya M Y, Aziz F. Tuning the Extinction Coefficient, Refractive Index, Dielectric Constant and Optical Conductivity of Gaq3 Films for the Application of OLED Displays Technology[J]. J Mater Sci-Mater Electron, 2017,28(19):14777-14786. doi: 10.1007/s10854-017-7347-y

    6. [6]

      Huang S, Pang G, Li X. Nanowires of Metal(Cd, Cu) Halide Complexes with 8-Hydroxyquinoline for Photoelectrochemical and Electrochemiluminescence Sensing[J]. J Nanopart Res, 2017,19(12)392. doi: 10.1007/s11051-017-4083-4

    7. [7]

      Kumar P, Misra A, Bhardwaj R. Synthesis and Characterization of Some 5-Coordinated Aluminum-8-Hydroxy Quinoline Derivatives for OLED Applications[J]. Displays, 2008,29(4):351-357. doi: 10.1016/j.displa.2007.10.006

    8. [8]

      Shi Y L, Fu Y Q, Lu C L. High Luminescence, Organic Inorganic Nanocomposite Films with Covalently Linked 8-Hydroxyquinoline Anchored to ZnS Nanoparticles[J]. Dyes Pigm, 2010,85(1):66-72.  

    9. [9]

      Chen X, Liao Y, Liu Y. Dye Sensitizers of Polymer Using the Complex of Cd(Ⅱ) or Cu(Ⅱ) with Imidazole as Auxiliary Electron Acceptor for Dye-Sensitized Solar Cells[J]. Dyes Pigm, 2017,139:420-430. doi: 10.1016/j.dyepig.2016.12.053

    10. [10]

      Cao J, Liu J C, Deng W T. A Novel Self-Assembly with Zinc Porphyrin Coordination Polymer for Enhanced Photocurrent Conversion in Supramolecular Solar Cells[J]. Electrochim Acta, 2013,112(12):515-521.  

    11. [11]

      Xiao L F, Liu Y, Xiu Q. Novel Polymeric Metal Complexes as Dye Sensitizers for Dye-Sensitized Solar Cells Based on Poly Thiophene Containing Complexes of 8-Hydroxyquinoline with Zn(Ⅱ), Cu(Ⅱ) and Eu(Ⅲ) in the Side Chain[J]. Tetrahedron, 2010,66(15):2835-2842. doi: 10.1016/j.tet.2010.02.039

    12. [12]

      Park S Y, Ghosh P, Park S O. Origin of Ultraweak Fluorescence of 8-Hydroxyquinoline in Water:Photoinduced Ultrafast Proton Transfer[J]. RSC Adv, 2016,6(12):9812-9821. doi: 10.1039/C5RA23802A

    13. [13]

      Cao D K, Liu B, Gu Y W. Phosphonates Containing 8-Hydroxyquinoline Moiety and Their Metal Complexes:Structures, Fluorescent and Magnetic Properties[J]. Dalton Trans, 2013,42(34):12228-12237. doi: 10.1039/c3dt51108a

    14. [14]

      Fazaeli Y, Amini M M, Najafi E. Synthesis and Characterization of 8-Hydroxyquinoline Complexes of Tin(Ⅳ) and Their Application in Organic Light Emitting Diode[J]. J Fluoresc, 2012,22(5):1263-1270. doi: 10.1007/s10895-012-1068-7

    15. [15]

      Chen C H, Shi J M. Metal Chelates as Emitting Materials for Organic Electroluminescence[J]. Coordin Chem Rev, 1998,171(1):161-174. doi: 10.1016/S0010-8545(98)90027-3

    16. [16]

      Zhao L M, Yan B. Novel Polymer-Inorganic Hybrid Materials Fabricated with in Situ Composition and Luminescent Properties[J]. J Non-Cryst Solids, 2007,353(52/54):4654-4659.  

    17. [17]

      Zhong C, Wu Q, Guo R. Synthesis and Luminescence Properties of Polymeric Complexes of Cu(Ⅱ), Zn(Ⅱ) and Al(Ⅲ) with Functionalized Polybenzimidazole Containing 8-Hydroxyquinoline Side Group[J]. Opt Mater, 2008,30(6):870-875. doi: 10.1016/j.optmat.2007.03.008

    18. [18]

      Luo J, Zhang C, Yang C. Novel Near-Infrared Luminescent Linear Copolymer Based on Tris(8-Hydroxyquinoline)erbium[J]. Synth Met, 2012,162(5/6):431-435.  

    19. [19]

      WU Yan, GUO Zhaonan, YU Shijun. Synthesis and Properties of Polyesters Containing 8-Hydroxyquinoline Side Groups and Their Zn(Ⅱ), Al(Ⅲ) Complexes[J]. Chinese J Appl Chem, 2017,34(3):338-344.  

    20. [20]

      YU Shijun, LU Yan, WU Siyu. Synthesis and Properties of Containing Schiff Base Side Groups and Their Zinc Complexes[J]. Chinese J Appl Chem, 2016,33(4):452-458.  

    21. [21]

      Huang H L, Zhong C F, Zhou Y. Zn(Ⅱ) Synthesis and Luminescent Properties of Polymeric Metal Complexes Containing Bis(8-Hydroxyquinoline) Group[J]. Eur Polym J, 2008,44(9):2944-2950. doi: 10.1016/j.eurpolymj.2008.06.028

    22. [22]

      Deng J Y, Guo L H, Xiu Q. Two Polymeric Metal Complexes Based on Polycarbazole Containing Complexes of 8-Hydroxyquinoline with Zn(Ⅱ) and Ni(Ⅱ) in the Backbone:Synthesis, Characterization and Photovoltaic Applications[J]. Mater Chem Phys, 2012,133(1):452-458. doi: 10.1016/j.matchemphys.2012.01.064

    23. [23]

      Du F F, Wang H, Bao Y Y. Conjugated Coordination Polymers Based on 8-Hydroxyquinoline Ligands:Impact of Polyhedral Oligomeric Silsesquioxanes on Solubility and Luminescence[J]. J Mater Chem, 2011,21(29):10859-10864. doi: 10.1039/c1jm11389e

    24. [24]

      LIU Dan. Preparation and Fluorescence Properties of Novel Rare Earth-Coordinated Polyaryletherketone Complexes[D]. Dalian: Dalian University of Technology, 2010(in Chinese).

    25. [25]

      Pohl R, Monters V A, Shinar J. Red-Green-Blue Emission from Tris(5-aryl-8-quinolinolate)Al(Ⅲ) Complexes[J]. J Org Chem, 2004,69(5):1723-1725. doi: 10.1021/jo035602q

    26. [26]

      Hopkins T A, Meerholz K, Shaheen S. Substituted Aluminum and Zinc Quinolates with Blue-Shifted Absorbance/Luminescence Bands:Synthesis and Spectroscopic, Photoluminescence, and Electroluminescence Characterization[J]. Chem Mater, 1996,8(2):344-351. doi: 10.1021/cm9503442

    27. [27]

      Knipping É, Roche I U, Dufresne S. Selective Fluorescence Turn-On of a Prefluorescent Azomethine with Zn2+[J]. Tetrahedron Lett, 2011,52(34):4385-4387. doi: 10.1016/j.tetlet.2011.06.003

  • 加载中
    1. [1]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    7. [7]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    8. [8]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    9. [9]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    12. [12]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    13. [13]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    14. [14]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    18. [18]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    19. [19]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(13)
  • Abstract views(900)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return