Citation: SONG Feiyue, XUE Yongbo, GAO Xin, BAI Ling, LI Jing, DENG Yun, XIE Lijuan, RUAN Wenquan. Palladium(Ⅱ) Extraction Using Different Ionic Liquid-Based Aqueous Biphasic Systems[J]. Chinese Journal of Applied Chemistry, ;2019, 36(3): 335-340. doi: 10.11944/j.issn.1000-0518.2019.03.180227 shu

Palladium(Ⅱ) Extraction Using Different Ionic Liquid-Based Aqueous Biphasic Systems

  • Corresponding author: RUAN Wenquan, wqruanjn@gmail.com
  • Received Date: 28 June 2018
    Revised Date: 7 August 2018
    Accepted Date: 11 October 2018

    Fund Project: the Fundamental Research Funds for the Central Universities JUSRP11521Supported by the Fundamental Research Funds for the Central Universities(No.JUSRP11521)

Figures(4)

  • To establish a green and efficient method to extract the precious metal palladium, we used an aqueous biphasic system(ABS) formed by "green solvent" ionic liquids and potassium phosphate to extract Pd(Ⅱ) without additional extractants. We also determined the binodal curves and tie-lines of 6 imidazolium-based ionic liquids by turbidity point method. The results indicate that there is no significant difference in phase forming ability and extraction rate between chloride-based and bromide-based ionic liquids. The hydrophobicity of the side chain on the cation is one of the key factors affecting phase forming ability of ionic liquids. Compared to ionic liquid without functional groups on the side chain of cation, the introduction of amino group and nitrile group on the side chain reduces the phase forming ability, but increases the extraction rate by 11.57% and 34.26%, respectively. Moreover, the extraction rate by ionic liquid with nitrile group could reach 100% when the concentrations of ionic liquid and potassium phosphate were 5.00% and 39.55%, respectively. The conclusions of this work could provide theoretical basis and data support for the design or choose of ionic liquids for efficient extraction of palladium(Ⅱ) by its aqueous biphasic system.
  • 加载中
    1. [1]

      Awual M R, Khaleque M A, Ratna Y. Simultaneous Ultra-trace Palladium(Ⅱ) Detection and Recovery from Wastewater Using New Class Meso-adsorbent[J]. J Ind Eng Chem, 2015,21(5):405-413.  

    2. [2]

      Barakat M A, Mahmoud M H H, Mahrous Y S. Recovery and Separation of Palladium from Spent Catalyst[J]. Appl Catal A, 2006,301(2):182-186.  

    3. [3]

      Zhou L, Xu J, Liang X. Adsorption of Platinum(Ⅳ) and Palladium(Ⅱ) from Aqueous Solution by Magnetic Cross-linking Chitosan Nanoparticles Modified with Ethylenediamine[J]. J Hazard Mater, 2010,182(1/2/3):518-524.  

    4. [4]

      Merget R, Rosner G. Evaluation of the Health Risk of Platinum Group Metals Emitted from Automotive Catalytic Converters[J]. Sci Total Environ, 2001,270(1/2/3):165-173.  

    5. [5]

      Shukla S K, Pandey S, Pandey S. Applications of Ionic Liquids in Biphasic Separation:Aqueous Biphasic Systems and Liquid-Liquid Equilibria[J]. J Chromatogr A, 2017,1559:44-61.  

    6. [6]

      Dietz M L. Ionic Liquids as Extraction Solvents:Where do We Stand[J]. Sep Sci Technol, 2006,41(10):2047-2063. doi: 10.1080/01496390600743144

    7. [7]

      Gras M, Papaiconomou N, Chainet E. Separation of Cerium(Ⅲ) from Lanthanum(Ⅲ), Neodymium(Ⅲ) and Praseodymium(Ⅲ) by Oxidation and Liquid-Liquid Extraction Using Ionic Liquids[J]. Sep Purif Technol, 2017,178:169-177. doi: 10.1016/j.seppur.2017.01.035

    8. [8]

      Gutowski K E, Broker G A, Willauer H D. Controlling the Aqueous Miscibility of Ionic Liquids:Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separations[J]. J Am Chem Soc, 2003,125(22)6632. doi: 10.1021/ja0351802

    9. [9]

      Zheng Y, Tong Y, Wang S. Mechanism of Gold(Ⅲ) Extraction Using a Novel Ionic Liquid-Based Aqueous Two Phase System without Additional Extractants[J]. Technol Sep Purif Technol, 2015,154:123-127. doi: 10.1016/j.seppur.2015.09.014

    10. [10]

      Ghosh K, Lahiri S, Sarkar K. Ionic liquid-Salt Based Aqueous Biphasic System for Rapid Separation of No-Carrier-Added 203Pb from Proton Irradiated Nat Tl2CO3, Target[J]. J Radioanal Nucl Chem, 2016,310(3):1-6.  

    11. [11]

      Depuydt D, Dehaen W, Binnemans K. Solvent Extraction of Scandium(Ⅲ) by an Aqueous Biphasic System with a Nonfluorinated Functionalized Ionic Liquid[J]. Ind Eng Chem Res, 2015,54(36):8988-8996. doi: 10.1021/acs.iecr.5b01910

    12. [12]

      Akama Y, Sali A. Extraction Mechanism of Cr(Ⅵ) on the Aqueous Two-Phase System of Tetrabutylammonium Bromide and (NH4)2SO4 Mixture[J]. Talanta, 2002,57(4):681-686. doi: 10.1016/S0039-9140(02)00076-0

    13. [13]

      Chen Y, Wang H, Pei Y. A Green Separation Strategy for Neodymium(Ⅲ) from Cobalt (Ⅱ) and Nickel (Ⅱ) Using an Ionic Liquid-Based Aqueous Two-Phase System[J]. Talanta, 2018,182:450-455. doi: 10.1016/j.talanta.2018.02.018

    14. [14]

      Tubío G, Pellegrini L, B B N. Liquid-Liquid Equilibria of Aqueous Two-Phase Systems Containing Poly(ethylene glycols) of Different Molecular Weight and Sodium Citrate[J]. J Chem Eng Data, 2006,51(1):209-212.  

    15. [15]

      Neves C M, Ventura S P, Freire M G. Evaluation of Cation Influence on the Formation and Extraction Capability of Ionic-Liquid-Based Aqueous Biphasic Systems[J]. J Phys Chem B, 2009,113(15):5194-5199. doi: 10.1021/jp900293v

    16. [16]

      Freire M G, Neves C M S S, Carvalho P J. Mutual Solubilities of Water and Hydrophobic Ionic Liquids[J]. J Phys Chem B, 2007,111(45):13082-13089. doi: 10.1021/jp076271e

    17. [17]

      Freire M G, Claudio A F M, Araujo J M M. ChemInform Abstract:Aqueous Biphasic Systems:A Boost Brought about by Using Ionic Liquids[J]. Chem Soc Rev, 2012,43(41):4966-4995.  

    18. [18]

      Bridges N J, Gutowski K E, Rogers R D. Investigation of Aqueous Biphasic Systems Formed from Solutions of Chaotropic Salts with Kosmotropic Salts(salt-salt ABS)[J]. Green Chem, 2007,9(2):177-183. doi: 10.1039/B611628K

    19. [19]

      Mikkola J P, Virtanen P, Sjöholm R. Aliquat 336®-A Versatile and Affordable Cation Source for an Entirely New Family of Hydrophobic Ionic Liquids[J]. Green Chem, 2006,8(3):250-255. doi: 10.1039/b512819f

    20. [20]

      Siriwardana A I, Torriero A A, Reynagonzález J M. Nitrile Functionalized Methimazole-Based Ionic Liquids[J]. J Organomet Chem, 2010,75(24):8376-8382.  

    21. [21]

      Akama Y, Sali A. Extraction Mechanism of Cr(Ⅵ) on the Aqueous Two-Phase System of Tetrabutylammonium Bromide and (NH4)2SO4 Mixture[J]. Talanta, 2002,57(4):681-686. doi: 10.1016/S0039-9140(02)00076-0

  • 加载中
    1. [1]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    9. [9]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    12. [12]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    13. [13]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    14. [14]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    15. [15]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    16. [16]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    17. [17]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    18. [18]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(4)
  • Abstract views(359)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return