Citation: SUN Xuejiao, WANG Siqi, DONG Jia, WU Qi, LIU Rui, LI Xiang, YU Shijun, ZHANG Zhiguang. Construction of Ag/NH2-MIL-125(Ti) Catalyst for Photo-Driven Reduction of Aqueous Cr(Ⅵ) Pollutant[J]. Chinese Journal of Applied Chemistry, ;2019, 36(3): 314-323. doi: 10.11944/j.issn.1000-0518.2019.03.180220 shu

Construction of Ag/NH2-MIL-125(Ti) Catalyst for Photo-Driven Reduction of Aqueous Cr(Ⅵ) Pollutant

  • Corresponding author: YU Shijun, sjyu@lnnu.edu.cn ZHANG Zhiguang, zgzhang@lnnu.edu.cn
  • Received Date: 22 June 2018
    Revised Date: 23 August 2018
    Accepted Date: 29 September 2018

    Fund Project: the Natural Science Foundation of Liaoning Province of China 20170540578Supported by the Natural Science Foundation of Liaoning Province of China(No.20170540578)

Figures(9)

  • The development of efficient and stable photocatalysts is highly desired and significantly critical for the current environmental field. In this paper, a novel Ag/NH2-MIL-125(Ti) was successfully prepared by solvothermal coupled with simple ultraviolet(UV) reduction method. The morphology, structure and optical properties of as-prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), UV-Vis diffuse reflectance spectra(DRS) and X-ray photoelectron spectroscopy(XPS). The photo-reduction performance of obtained catalysts were tested on Cr(Ⅵ) removal in various conditions. Under visible light irradiation(λ ≥ 420 nm), the catalysts dosage, heavy metal concentration, pH and hole scavenger were fully investigated to optimize the best Cr(Ⅵ) reduction parameters. The results indicate that Ag/NH2-MIL-125(Ti) exhibits excellent adsorption and photo-reduction activities on Cr(Ⅵ), which is 3.11 times higher than that of NH2-MIL-125(Ti). This special "sesame cakes" and heterojunction formation of Ag/NH2-MIL-125(Ti) are attributed to enhancing Cr(Ⅵ) catalytic reduction performance. Meanwhile, through the control experiments, the main active species during the photo-reduction route were suggested and the mechanism of the Cr(Ⅵ) reduction was proposed. This study will provide theoretical and experimental guidance for the application of novel metal-organic framework(MOF) composites in the field of environmental remediation.
  • 加载中
    1. [1]

      Das D P, Parida K M. Solar Light Induced Photocatalytic Degradation of Pollutants over Titania Pillared Zirconium Phosphate and Titanium Phosphate[J]. Catal Surveys Asia, 2008,12(3):203-213. doi: 10.1007/s10563-008-9052-6

    2. [2]

      Barrera-Diaz C E, Lugo-Lugo V, Bilyeu B. A Review of Chemical, Electrochemical and Biological Methods for Aqueous Cr(Ⅵ) Reduction[J]. J Hazard Mater, 2012,223/224(2):1-12.  

    3. [3]

      Xu X R, Li H B, Gu J D. Photocatalytic Reduction of Hexavalent Chromium and Degradation of Di-N-Butyl Phthalate in Aqueous TiO2 Suspensions under Ultraviolet Light Irradiation[J]. Environ Technol, 2007,28(9):1055-1061. doi: 10.1080/09593332808618866

    4. [4]

      WANG Xuejin, ZHU Xiaping, LAN Lumei. Efficient Removal of Cr(Ⅵ) in Wastewater by Mg/Al Layered Superamolecular Compounds[J]. Chinese J Appl Chem, 2017,34(1):583-590.  

    5. [5]

      Tian Y, Huang L, Zhou X. Electroreduction of Hexavalent Chromium Using a Polypyrrole-Modified Electrode under Potentiostatic and Potentiodynamic Conditions[J]. J Hazard Mater, 2012,225/226(10):15-20.  

    6. [6]

      Mo X, Yang Z H, Xu H Y. Combination of Cathodic Reduction with Adsorption for Accelerated Removal of Cr(Ⅵ) Through Reticulated Vitreous Carbon Electrodes Modified with Sulfuric Acid-Glycine Co-doped Polyaniline[J]. J Hazard Mater, 2015,286:493-502. doi: 10.1016/j.jhazmat.2015.01.002

    7. [7]

      Brodie E L, Joyner D C, Faybishenko B. Microbial Community Response to Addition of Polylactate Compounds to Stimulate Hexavalent Chromium Reduction in Groundwater[J]. Chemosphere, 2011,85(4):660-665. doi: 10.1016/j.chemosphere.2011.07.021

    8. [8]

      Daghio M, Espinoza Tofalos A, Leoni B. Bioelectrochemical Btex Removal at Different Voltages:Assessment of the Degradation and Characterization of the Microbial Communities[J]. J Hazard Mater, 2018,341:120-127. doi: 10.1016/j.jhazmat.2017.07.054

    9. [9]

      Yoon J, Shim E, Bae S. Application of Immobilized Nanotubular TiO2 Electrode for Photocatalytic Hydrogen Evolution:Reduction of Hexavalent Chromium(Cr(Ⅵ)) in Water[J]. J Hazard Mater, 2009,161(2/3):1069-1074.  

    10. [10]

      Maurin G, Serre C, Cooper A. The New Age of MOFs and of Their Porous-Related Solids[J]. Chem Soc Rev, 2017,46(11):3104-3107. doi: 10.1039/C7CS90049J

    11. [11]

      An Y, Xu B, Liu Y. Photocatalytic Overall Water Splitting over MIL-125(Ti) upon CoPi and Pt Co-catalyst Deposition[J]. Chem Open, 2017,6(6):701-705.  

    12. [12]

      An Y, Liu Y, An P. Ni Coordination to an Al-Based Metal-Organic Framework Made from 2-Aminoterephthalate for Photocatalytic Overall Water Splitting[J]. Angew Chem Int Ed, 2017,129(11):3036-3040.  

    13. [13]

      Shen L, Liang S, Wu W. Multifunctional NH2-Mediated Zirconium Metal-Organic Framework as an Efficient Visible-Light-Driven Photocatalyst for Selective Oxidation of Alcohols and Reduction of Aqueous Cr(Ⅵ)[J]. Dalton Trans, 2013,42(37):13649-13657. doi: 10.1039/c3dt51479j

    14. [14]

      An Y, Li H, Liu Y. Photoelectrical, Photophysical and Photocatalytic Properties of Al-Based MOFs:MIL-53(Al) and MIL-53-NH2(Al)[J]. J Solid State Chem, 2016,233:194-198. doi: 10.1016/j.jssc.2015.10.037

    15. [15]

      Liang R, Jing F, Shen L. MIL-53(Fe) as a Highly Efficient Bifunctional Photocatalyst for the Simultaneous Reduction of Cr(Ⅵ) and Oxidation of Dyes[J]. J Hazard Mater, 2015,287:364-372. doi: 10.1016/j.jhazmat.2015.01.048

    16. [16]

      Shi L, Wang T, Zhang H. An Amine-Functionalized Iron(Ⅲ) Metal-Organic Framework as Efficient Visible-Light Photocatalyst for Cr(Ⅵ) Reduction[J]. Adv Sci, 2015,2(3)1500006. doi: 10.1002/advs.201500006

    17. [17]

      Murray W A, Barnes W L. Plasmonic Materials[J]. Adv Mater, 2007,19(22):3771-3782. doi: 10.1002/(ISSN)1521-4095

    18. [18]

      Murray W A, Suckling J R, Barnes W L. Overlayers on Silver Nanotriangles:Field Confinement and Spectral Position of Localized Surface Plasmon Resonances[J]. Nano Lett, 2006,6(8):1772-1777. doi: 10.1021/nl060812e

    19. [19]

      Li H Y, Sun Y J, Cai B. Hierarchically Z-Scheme Photocatalyst of Ag@AgCl Decorated on BiVO4(040) with Enhancing Photoelectrochemical and Photocatalytic Performance[J]. Appl Catal B, 2015,170/171:206-214. doi: 10.1016/j.apcatb.2015.01.043

    20. [20]

      Xu H, Xie J, Jia W. The Formation of Visible Light-Driven Ag/Ag2O Photocatalyst with Excellent Property of Photocatalytic Activity and Photocorrosion Inhibition[J]. J Colloid Interface Sci, 2018,516:511-521. doi: 10.1016/j.jcis.2018.01.071

    21. [21]

      Liu Q X, Zeng C M, Ai L H. Boosting Visible Light Photoreactivity of Photoactive Metal-Organic Framework:Designed Plasmonic Z-Scheme Ag/AgCl@MIL-53-Fe[J]. Appl Catal, B, 2018,224:8-45.

    22. [22]

      Gao S, Feng T, Feng C. Novel Visible-Light-Responsive Ag/AgCl@MIL-101 Hybrid Materials with Synergistic Photocatalytic Activity[J]. J Colloid Interface Sci, 2016,466:284-290. doi: 10.1016/j.jcis.2015.12.045

    23. [23]

      Liu J X, Li R, Wang Y F. The Active Roles of ZIF-8 on the Enhanced Visible Photocatalytic Activity of Ag/AgCl:Generation of Superoxide Radical and Adsorption[J]. J Alloys Compd, 2017,693:543-549. doi: 10.1016/j.jallcom.2016.09.201

    24. [24]

      Fu Y H, Sun L, Yang H. Visible-Light-Induced Aerobic Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes over Ni-Doped NH2-MIL-125(Ti)[J]. Appl Catal B, 2016,187:212-217. doi: 10.1016/j.apcatb.2016.01.038

    25. [25]

      Idris A, Hassan N, Rashid R. Kinetic and Regeneration Studies of Photocatalytic Magnetic Separable Beads for Chromium(Ⅵ) Reduction under Sunlight[J]. J Hazard Mater, 2011,186(1):629-635. doi: 10.1016/j.jhazmat.2010.11.101

    26. [26]

      Zhou Y S, Chen G, Yu Y G. A New Oxynitride-Based Solid State Z-Scheme Photocatalytic System for Efficient Cr(Ⅵ) Reduction and Water Oxidation[J]. Appl Catal B, 2016,183:176-184. doi: 10.1016/j.apcatb.2015.10.040

    27. [27]

      Wang H, Yuan X, Wu Y. Facile Synthesis of Amino-Functionalized Titanium Metal-Organic Frameworks and Their Superior Visible-Light Photocatalytic Activity for Cr(Ⅵ) Reduction[J]. J Hazard Mater, 2015,286:187-194. doi: 10.1016/j.jhazmat.2014.11.039

    28. [28]

      Zhu S R, Liu P F, Wu M K. Enhanced Photocatalytic Performance of BiOBr/NH2-MIL-125(Ti) Composite for Dye Degradation under Visible Light[J]. Royal Soc Chem, 2016,45(43)17521.  

    29. [29]

      Guo H X, Guo D, Zheng Z S. Visible-Light Photocatalytic Activity of Ag@MIL-125(Ti) Microspheres[J]. Appl Organomet Chem, 2015,29(9):18-623.  

    30. [30]

      Wang A N, Zhou Y J, Wang Z L. Titanium Incorporated with UIO-66(Zr)-Type Metal-Organic Framework(MOF) for Photocatalytic Application[J]. RSC Adv, 2016,6(5):3671-3679. doi: 10.1039/C5RA24135A

    31. [31]

      Qin J N, Wang S B, Wang X C. Visible-Light Reduction CO2 with Dodecahedral Zeolitic Imidazolate Framework ZIF-67 as an Efficient Co-Catalyst[J]. Appl Catal B, 2017,209:476-482. doi: 10.1016/j.apcatb.2017.03.018

    32. [32]

      Vignesh K, Priyanka R, Rajarajan M. Photoreduction of Cr(Ⅵ) in Water Using Bi2O3-ZrO2 Nanocomposite under Visible Light Irradiation[J]. Mater Sci Eng B, 2013,178(2):149-157. doi: 10.1016/j.mseb.2012.10.035

    33. [33]

      Xu X R, Li H B, Gu J D. Simultaneous Decontamination of Hexavalent Chromium and Methyl Tert-Butyl Ether by UV/TiO2 Process[J]. Chemosphere, 2006,63(2):254-260. doi: 10.1016/j.chemosphere.2005.07.062

    34. [34]

      Liang R W, Shen L J, Jing F F. NH2-Mediated Indium Metal-Organic Framework as a Novel Visible-Light-Driven Photocatalyst for Reduction of the Aqueous Cr(Ⅵ)[J]. Appl Catal B, 2015,162:245-251. doi: 10.1016/j.apcatb.2014.06.049

    35. [35]

      Fu Y, Sun D, Chen Y. An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction[J]. Angew Chem Int Ed, 2012,124(14):3420-3423. doi: 10.1002/ange.v124.14

    36. [36]

      Yang Z, Xu X, Liang X. Construction of Heterostructured MIL-125/Ag/g-C3N4 Nanocomposite as an Efficient Bifunctional Visible Light Photocatalyst for the Organic Oxidation and Reduction Reactions[J]. Appl Catal B, 2017,205:42-54. doi: 10.1016/j.apcatb.2016.12.012

    37. [37]

      Divya K S, Reethu V N, Mathew S. Enhanced Photocatalytic Performance of RGO/Ag Nanocomposites Produced via a Facile Microwave Irradiation for the Degradation of Rhodamine B in Aqueous Solution[J]. Appl Surf Sci, 2018,444:811-818. doi: 10.1016/j.apsusc.2018.01.303

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    9. [9]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(13)
  • Abstract views(2037)
  • HTML views(632)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return