Citation: SUN Jinyu, WANG Yingjin, SHI Yufang, REN Guangming, ZHAO Minggen. Synthesis of Two Ferrocene-Based Chalcone Derivatives and Their Ultrafast Third-Order Nonlinear Optical Response[J]. Chinese Journal of Applied Chemistry, ;2019, 36(3): 282-290. doi: 10.11944/j.issn.1000-0518.2019.03.180216 shu

Synthesis of Two Ferrocene-Based Chalcone Derivatives and Their Ultrafast Third-Order Nonlinear Optical Response

  • Corresponding author: SHI Yufang, yfshi868@163.com
  • Received Date: 20 June 2018
    Revised Date: 22 August 2018
    Accepted Date: 28 September 2018

    Fund Project: the Fund for Shanxi "1331 Project" Key Subjects Construction 2017-42Supported by the Fund for Shanxi "1331 Project" Key Subjects Construction(No.2017-42)

Figures(7)

  • Two ferrocene-based isomeric chalcone derivatives 1-ferrocenly-3-(thiophen-2-yl) prop-2-en-1-one(a) and 1-(ferrocenly)-3-(thiophen-3-yl) prop-2-en-1-one(b) were synthesized. Their third-order nonlinear optical properties were measured by Z-scan technique with ultrafast laser operating at 532 nm laser in 180 fs pulse, respectively. The relevant parameters were given as follows:the nonlinear absorption coefficient β=-2.1×10-12 m/W, the nonlinear refractive index n2=1.9×10-19 m2/W and the third-order nonlinear hyperpolarizability γ=5.37×10-32 esu for compound a; β=-1.2×10-13 m/W, n2=2.0×10-19 m2/W and γ=4.48×10-32 esu for compound b. The results indicate that the excitation of femtosecond laser enables intramolecular charge transfer to occur quickly. Thus two compounds can exhibit ultrafast third-order nonlinear optical response. The orbital energies, polarizabilities and possession ratios of different groups in frontier molecular orbitals of compounds a and b were calculated by B3LYP/6-311+G(d, p) level. The percentage of ferrocene group in the frontier molecular orbitals of compounds a and b is 97% and 98%, respectively, which indicates that ferrocene group plays a leading role in the nonlinear optical properties of two compounds.
  • 加载中
    1. [1]

      Thangaraj M, Ravi G, GirisunT C S. Ethylenediaminium Di(4-nitrophenolate):A Third Order NLO Material for Optical Limiting Applications[J]. Spectrochim Acta Part A, 2015,138(1):158-163.  

    2. [2]

      Zidan M D, Allahham A. Z-Scan Measurements of the Third-Order Optical Nonlinearity of a C60 Doped Poly(dimethylendicarboxylate[J]. Acta Phys Pol A, 2015,128(1):25-28.

    3. [3]

      Raghavendra S, Dileep C, Dharmaprakash S M. Structural, Nonlinear Absorption and Optical Limiting Properties of a New Organic Crystal 3-(3-Fluorophenyl)-1-[4-(methylsulfanyl)phenyl] prop-2-en-1-one[J]. Mol Cryst Liq Cryst, 2015,609(1):192-204.  

    4. [4]

      Raghavendra S, Sadolalu C, Jayarama A. Reverse Saturable Absorption Based Optical Limiter[J]. Mater Chem Phys, 2015,49/150:487-494.  

    5. [5]

      Hu C, Chen Z, Xiao H. Synthesis and Characterization of a Novel Indoline Based Nonlinear Optical Chromophore with Excellent Electro-Optic Activity and High Thermal Stability by Modifying the π-Conjugated Bridges[J]. J Mater Chem C, 2017,5(21):5111-5118. doi: 10.1039/C7TC00735C

    6. [6]

      YANG Qiongfen, LI Quan, ZHAO Keqing. Charge Transport and Third-Order Optical Properties of Triphenylene Derivative Molecules Substituted with Ester and Pridine Functional Groups[J]. J Atom Mol Phys, 2014,31(1):15-20. doi: 10.3969/j.issn.1000-0364.2014.01.003

    7. [7]

      Kalaivanan R, Srinivasan K. Synthesis, Growth and Characterization of Organic Nonlinear Optical Material:N-Benzyl-2-methyl-4-nitroaniline(BNA)[J]. Opt Laser Technol, 2017,90(1):27-32.  

    8. [8]

      Janardhana K, Ravindrachary V, Kumar P C R. Third Order Nonlinear Optical Studies of 1-(4-Chloro phenyl)-3-(4-dimethylamino phenyl) prop-2-en-1-one[J]. J Cryst Growth, 2013,368(1):11-20.  

    9. [9]

      Moitra S, Seth S K, Kar T. Synthesis, Crystal Structure, Characterization and DFT Studies of L-Valine L-Valinium Hydrochloride[J]. J Cryst Growth, 2010,312(12/13):1977-1982.  

    10. [10]

      Adhikari S, Seth S K, Kar T. Structural Studies and Physicochemical Properties of L-Valine Hydrochloride Monohydrate[J]. Cryst Eng Comm, 2013,15(36):7372-7379. doi: 10.1039/c3ce41079j

    11. [11]

      Nalwa H S, Miyata S(Eds.). Nonlinear Optics of Organic Molecules and Polymers[M]. CRC Press, Boca Raton, FL, 1997.

    12. [12]

      Kiran A J, Lee H W, Ravindra H J. Designing Novel Chalcone Single Crystals with Ultrafast Nonlinear Optical Responses and Large Multi-photon Absorption Coefficients[J]. Curr Appl Phys, 2010,10(5):1290-1296. doi: 10.1016/j.cap.2010.03.006

    13. [13]

      Farag A A M. Optical Absorption Studies of Copper Phthalocyanine Thin Films[J]. Opt Laser Technol, 2007,39(4):728-732. doi: 10.1016/j.optlastec.2006.03.011

    14. [14]

      Prasad P N, Williams D. Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers[M]. Wiley:New York, 1991.

    15. [15]

      Wang J, Chen Y, Blau W J. Carbon Nanotubes and Nanotube Composites for Nonlinear Optical Devices[J]. J Mater Chem, 2009,19(40):7425-7443. doi: 10.1039/b906294g

    16. [16]

      Feng Y Y, Dong N N, Wang G Z. Saturable Absorption Behavior of Free-Standing Graphene Polymer Composite Films over Broad Wavelength and Time Ranges[J]. Opt Express, 2015,23(1):559-569.  

    17. [17]

      Prabhu A N, Jayarama A, Bhat K S. Growth, Characterization and Structural Investigation of a Novel Nonlinear Optical Crystal[J]. J Mol Struct, 2013,1031(1):79-84.  

    18. [18]

      Prabhu A N, Jayarama A, Upadhyaya V. Synthesis Growth and Characterization of π Conjugated Organic Nonlinear Optical Chalcone Derivative[J]. Maert Chem Phys, 2013,138(1):179-185.  

    19. [19]

      Ganapayya B, Jayarama A, Dharamaprakash S M. Crystal Structure and Optical Properties of a New Nonlinear Optical Chalcone Crystal[J]. Mol Cryst Liq Cryst, 2013,571(1):87-98.  

    20. [20]

      Prabhu S R, Jayarama A, Upadhyaya V. Structure and Characterization of a Novel Chalcone Crystal Having Nitro as an Acceptor Group[J]. Mol Cryst Liq Cryst, 2015,607(1):200-214.  

    21. [21]

      Menezes A P, Raghavendra S, Jayarama A. Structural, Thermal, Linear and Nonlinear Optical Studies of an Organic Optical Limiter Based on Reverse Saturable Absorption[J]. J Mol Struct, 2016,1119(1):167-176.  

    22. [22]

      Pedersen B, Wagner G, Herrmann R. Ferrocenylethenylsilatranes and a Cymantrenylsilatrane[J]. J Organomet Chem, 1999,590(2):129-137. doi: 10.1016/S0022-328X(99)00440-4

    23. [23]

      SHI Dong. Theoretical Study of the Property-Structure Relationship of a Series of Ferrocenyl Second-Order Nonlinear Opyical Complexes[D]. Changchun: Northeast Normal University, 2007(in Chinese). 

    24. [24]

      Teimuri-Mofrad R, Rahimpour K, Ghadari R. Design, Synthesis and Characterization of Ferrocene Based Ⅴ-Shaped Chromophores with Modified Nonlinear Effect[J]. J Organomet Chem, 2017,846:397-406. doi: 10.1016/j.jorganchem.2017.07.023

    25. [25]

      Teng M Y, Zhang J, Huang G L. Synthesis and Nonlinear Optical Properties of Novel Chalcone Analogues of Ferrocenyl Biaryl Derivatives[J]. J Organomet Chem, 2015,791:298-302. doi: 10.1016/j.jorganchem.2015.05.044

    26. [26]

      Raimundo J M, Blanchard P, Gallego-Planas N. Design and Synthesis of Push-Pull Chromophores for Second-Order Nonlinear Optics Derived from Rigidified Thiophene-Based π-Conjugating Spacers[J]. J Org Chem, 2002,67(1):205-218.  

    27. [27]

      Tan J, Li R, Li D. Thiophene-Based Terpyridine and Its Zinc Halide Complexes:Third-Order Nonlinear Optical Properties in the Near-Infrared Region[J]. Dalton Trans, 2015,44(3):1473-1482. doi: 10.1039/C4DT02933J

    28. [28]

      Khalifa M E, Al-Amoudi M S, Gobouri A A. Synthesis of Novel Arylazothiazolyl-thiophene Dyes for Solar Cell and Nonlinear Optical Materials[J]. Acta Chim Slov, 2016,63(1):121-128. doi: 10.17344/acsi.2015.2018

    29. [29]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT, 2010.

    30. [30]

      Xiao C, Zhang A, Chai Z. Synthesis and Characterization of a New Polymer-Based Supramolecular Recognition Material and Its Adsorption for Cesium[J]. Solvent Extr Ion Exch, 2012,30(1):17-32.  

    31. [31]

      LIU Wei, YANG Shuilan, SONG Pan. Synthesis and Characterization of a Phosphorus-Containing Tripod Ligand and Its Europium Comphex[J]. Chinese J Appl Chem, 2015,32(7):777-787.  

    32. [32]

      HUO Jianxia, SONG Suwei, JIN Chengwei. Synthesis, Characterization, Thermal Decomposition Mechanism and Properties of the[Eu(4-MOBA)3(terpy)(H2O)]2 Complex[J]. Acta Phys-Chim Sin, 2016,32(4):901-906.  

    33. [33]

      Beck A D. Density-Functional Thermochemistry.Ⅲ.The Role of Exact Exchange[J]. J Chem Phys, 1993,98(7):5648-5659. doi: 10.1063/1.464913

    34. [34]

      Lee C, Yang W, Parr R G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density[J]. Phys Rev B, 1988,37(2):785-791. doi: 10.1103/PhysRevB.37.785

    35. [35]

      O'Boyle N M, Tenderholt A L, Langner K M. A Library for Package-Independent Computational Chemistry Algorithms[J]. J Comput Chem, 2008,29(5):839-845. doi: 10.1002/(ISSN)1096-987X

    36. [36]

      AN Xinyou, WU Weidong, REN Weiyi. The Applications and Development in Nonlinear Optical Material of the Z-Scan Techniques[J]. J China West Norm Univ(Nat Sci), 2010,31(4):429-434.  

    37. [37]

      Sheik-Bahae M, Said A A, Wei T H. Sensitive Measurement of Optical Nonlinearities Using a Single Beam[J]. IEEE J Quantum Electron, 1990,26(4):760-769. doi: 10.1109/3.53394

    38. [38]

      Ono N, Ito S, Wu C H. Nonlinear Light Absorption in Meso-Substituted Tetrabenzoporphyrin and Tetraarylporphyrin Solutions[J]. Chem Phys, 2000,262(2/3):467-473.  

  • 加载中
    1. [1]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    2. [2]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    5. [5]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

    6. [6]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    13. [13]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    14. [14]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    15. [15]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    16. [16]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    17. [17]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

Metrics
  • PDF Downloads(1)
  • Abstract views(738)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return