Citation: SHI Wenlu, QIAO Qingdong, LI Qi, REN Tieqiang, YU Tingyun. Alkylation of Benzene with Coal Oil to Heavy Alkylbenzene Catalyzed by Urea Modified β-Molecular Sieve[J]. Chinese Journal of Applied Chemistry, ;2019, 36(3): 291-299. doi: 10.11944/j.issn.1000-0518.2019.03.180189 shu

Alkylation of Benzene with Coal Oil to Heavy Alkylbenzene Catalyzed by Urea Modified β-Molecular Sieve

  • Corresponding author: QIAO Qingdong, qiaoqingdong@163.com LI Qi, liqifs@163.com
  • Received Date: 24 May 2018
    Revised Date: 17 August 2018
    Accepted Date: 20 September 2018

Figures(8)

  • Molecular sieve catalysts with different pore structures and acidity were prepared by acid pickling and alkali washing modification of β-molecular sieve with n(Si):n(Al)=15:1. The structure, properties, and the application of β-molecular sieve catalysts in alkylation of benzene were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), N2 adsorption-desorption, NH3-TPD(temperature programmed desorption) and Py-FTIR(Fourier transform infrared spectroscopy). The results show that hydrochloric acid leaching can enlarge the pore size, specific surface area and pore volume of β-molecular sieve, but weaken the acidity, while the sodium hydroxide solution leaching results in the collapse of molecular sieve skeleton, leading to the destruction of the acidity and the pore structure. Modification by urea not only improves the pore structure of molecular sieve, but also has little effect on the acidity of molecular sieve. It is a mild and effective way to modify the molecular sieve. β-molecular sieve catalyst modified with urea has the best activity in alkylation of benzene with coal-based cold trap oil:the conversion of olefin is 91.2%, and the selectivities of 2-HAB(heavy alkylbenzene) and 3-HAB isomers are 50.1% and 33.55%, respectively, accounting for 84% of the total alkylation product.
  • 加载中
    1. [1]

      LIU Liangqun, ZHANG Yiting, ZHOU Hongliang. A Surfactant for Oil Displacement-Heavy Alkylbenzene[J]. Daily Chem Sci, 2015,38(9):40-41, 45.  

    2. [2]

      CAO Fengying, BAI Ziwu, GUO Qi. Synthesis of Alkylbenzene for Oil Displacement[J]. Daily Chem Sci, 2015,38(2):28-30, 38.  

    3. [3]

      CUI Zhenggang, ZOU Wenhua, ZHANG Tianlin. Synthesis of Heavy Alkylbenzene Sulfonate and Its Application in Improving Oil Recovery[J]. J East China Univ Technol, 1999(4):19-26.  

    4. [4]

      LI Lingyun. Study on a Synthetic Process of Multi-component Heavy Alkylbenzene Sulfonate for Tertiary Oil Recovery[J]. Inner Mongolia Petrochem Ind, 2015,41(1):5-8. doi: 10.3969/j.issn.1006-7981.2015.01.002

    5. [5]

      LI Peijun, XU Fan, MENG Xian'ge. Comprehensive Development and Utilization of Heavy Alkylbenzene[J]. China Wash Prod Ind, 2011(2):56-60. doi: 10.3969/j.issn.1672-2701.2011.02.013

    6. [6]

      Jian W Y S. Research Progress of Catalysts for Alkylation of Benzene with Long-Chain Alkenes[J]. Guang Zhou Chem Ind Tech, 2004,2001.  

    7. [7]

      Aitani A, Wang J S B, Wang I. Environmental Benign Catalysis for Linear Alkylbenzene Synthesis:A Review[J]. Catal Surv Asia, 2014,18(1):1-12.  

    8. [8]

      Olivier-Bourbigou H, Magna L, Morvan D. Ionic Liquids and Catalysis:Recent Progress from Knowledge to Applications[J]. Appl Catal A:Genl, 2010,373(1/2):1-56.  

    9. [9]

      Zhang Q, Zhang S, Deng Y. Recent Advances in Ionic Liquid Catalysis[J]. Green Chem, 2011,13(10):2619-2637. doi: 10.1039/c1gc15334j

    10. [10]

      He Y, Wan C, Zhang Q. Durability Enhanced Ionic Liquid Catalyst for Friedel Crafts Reaction Between Benzene and 1-Dodecene:Insight into Catalyst Deactivation[J]. RSC Adv, 2015,5(76):62241-62247. doi: 10.1039/C5RA10117D

    11. [11]

      Bellussi G, Pazzuconi G, Perego C. Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed by β-Zeolites[J]. J Catal, 1995,157(1):227-234. doi: 10.1006/jcat.1995.1283

    12. [12]

      Corma A, Martinez-Soria V, Schnoeveld E. Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite:Catalytic Behaviour and Kinetic Mechanism[J]. J Catal, 2000,192(1):163-173. doi: 10.1006/jcat.2000.2849

    13. [13]

      Azizi N, Torkiyan L, Saidi M R. Highly Efficient One-Pot Three-Component Mannich Reaction in Water Catalyzed by Heteropoly Acids[J]. Org Lett, 2006,8(10):2079-2082. doi: 10.1021/ol060498v

    14. [14]

      WANG Guoliang, LI Shuben, LIU Jinlong. Advances in Heteropoly Acids and Their Supported Catalysts[J]. Refining Technol Eng, 2002,32(9):46-51. doi: 10.3969/j.issn.1002-106X.2002.09.014

    15. [15]

      HAN Bingbing, HAN Shejiao, JIN Yong. Alkylation of Benzene with Long Chain Olefin Catalyzed by Molecular Sieve[J]. Chem React Eng Process, 1997(2):190-193.  

    16. [16]

      TONG Huijuan, LI Gong. Effects of Structure and Acidity of Different Molecular Sieves on Alkylation of Benzene with 1-Dodecene[J]. J Liaoning Univ Pet Chem Technol, 2003,23(4):7-10. doi: 10.3969/j.issn.1672-6952.2003.04.003

    17. [17]

      WU Yihui. Pore Modification, Characterization and Acid Catalytic Properties of Beta Molecular Sieve[D]. Dalian: Dalian University of Technology, 2012(in Chinese). 

    18. [18]

      ZHOU Zhifeng. Progress in Catalysts for Alkylation of Benzene with Long Chain Olefins[J]. Liaoning Chem Ind, 2015,44(5):569-571.  

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    6. [6]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    17. [17]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    18. [18]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(5)
  • Abstract views(356)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return