Citation: XING Chenli, WANG Jing, ZHANG Zhaohui, XIE Dandan, LÜ Piaopiao. Multiple Metal Ion Imprinted Electrochemical Sensor with Enhanced Sensitivity by Graphene Oxide-C60 Composite[J]. Chinese Journal of Applied Chemistry, ;2019, 36(3): 341-348. doi: 10.11944/j.issn.1000-0518.2019.03.180160 shu

Multiple Metal Ion Imprinted Electrochemical Sensor with Enhanced Sensitivity by Graphene Oxide-C60 Composite

  • Corresponding author: ZHANG Zhaohui, zhaohuizhang77@163.com
  • Received Date: 8 May 2018
    Revised Date: 6 June 2018
    Accepted Date: 20 July 2018

    Fund Project: the National Natural Science Foundation of China 21565014Supported by the National Natural Science Foundation of China(No.21767011, No.21565014), the Innovation Fund Designated for Graduate Students of Jishou University and the Collaborative Innovation Center 2011 of Hunan Provincethe National Natural Science Foundation of China 21767011

Figures(8)

  • A novel multiple-ion imprinted sensor based on graphene oxide/fullerene composite(GO-C60) was developed for simultaneous and selective determination of Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ). The multiple-ion imprinted polymer was prepared with methacrylic acid and edetic acid as the functional monomer and ligand, respectively. The multiple-ion imprinted sensor was prepared by dispensing the imprinted polymer onto the GO-C60 modified carbon electrode surface. The performance of multiple-ion imprinted sensor was investigated using cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy in details. Under the optimized conditions, a linear relationship existed between the response currents of the multiple-ion imprinted sensor and the negative logarithm of ion concentrations ranging from 1.0×10-9 mol/L to 5.0×10-7 mol/L with the detection limit of 5.0×10-10, 5.0×10-10 and 1.0×10-10 mol/L for Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ), respectively. The multiple-ion imprinted sensor was successfully used for simultaneous detection of trace level Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ) ions in real samples.
  • 加载中
    1. [1]

      Dai G, Peng N, Zhong J. Effect of Metals on Microcystin Abundance and Environmental Fate[J]. Environ Pollut, 2017,226:154-162. doi: 10.1016/j.envpol.2017.04.013

    2. [2]

      Yu J, Yang S, Sun D. Simultaneously Determination of Multi Metal Elements in Water Samples by Liquid Cathode Glow Discharge-Atomic Emission Spectrometry[J]. Microchem J, 2016,128:325-330. doi: 10.1016/j.microc.2016.05.019

    3. [3]

      Boutorabi L, Rajabi M, Bazregar M. Selective Determination of Chromium(Ⅵ) Ions Using In-Tube Electro-Membrane Extraction Followed by Flame Atomic Absorption Spectrometry[J]. Microchem J, 2017,132:378-384. doi: 10.1016/j.microc.2017.02.028

    4. [4]

      Silva F L, Duarte T A, Melo L S. Development of a Wet Digestion Method for Paints for the Determination of Metals and Metalloids Using Inductively Coupled Plasma Optical Emission Spectrometry[J]. Talanta, 2016,146(4/5):188-194.  

    5. [5]

      Jalalvand A R, Goicoechea H C, Rutledge D N. Applications and Challenges of Multi-way Calibration in Electrochemical Analysis[J]. TrAC-Trend Anal Chem, 2017,87:32-48. doi: 10.1016/j.trac.2016.11.002

    6. [6]

      ZHANG Minglei, ZHANG Zhaohui, LUO Lijuan. Preparation and Adsorption Properties of Magnetic Fe3O4@SiO2@CS Cadmium Ion-Imprinted Polymer[J]. Chem J Chinese Univ, 2011,32(12):2763-2768.  

    7. [7]

      LIU Qiuye, HE Xiwen, LI Wenyou. Studies on Chitosan Coated on Silica for Imprinting Bovine Hemoglobin[J]. Chem J Chinese Univ, 2009,30(4):691-696. doi: 10.3321/j.issn:0251-0790.2009.04.010

    8. [8]

      Laatikainen K, Udomsap D, Siren H. Effect of Template Ion-Ligand Complex Stoichiometry on Selectivity of Ion-Imprinted Polymers[J]. Talanta, 2015,134:538-545. doi: 10.1016/j.talanta.2014.11.050

    9. [9]

      AN Fuqiang, GAO Baojiao, LI Gang. Studies on Preparation of Ion-Imprinted Polyethyleneimine on Silica Gel Particles and Binding Properties for Metal Ions[J]. Acta Polym Sin, 2007(4):366-373. doi: 10.3321/j.issn:1000-3304.2007.04.012

    10. [10]

      Lin S, Wei W, Wu X. Selective Recovery of Pd(Ⅱ) from Extremely Acidic Solution Using Ion-Imprinted Chitosan Fiber:Adsorption Performance and Mechanisms[J]. J Hazard Mater, 2015,299(6):10-17.  

    11. [11]

      Liu H, Kong D, Sun W. Effect of anions on the Polymerization and Adsorption Processes of Cu(Ⅱ) Ion-Imprinted Polymers[J]. Chem Eng J, 2016,303:348-358. doi: 10.1016/j.cej.2016.06.004

    12. [12]

      Luo X, Guo B, Luo J. Recovery of Lithium from Wastewater Using Development of Li Ion-Imprinted Polymers[J]. ACS Sustainable Chem Eng, 2015,3:460-467. doi: 10.1021/sc500659h

    13. [13]

      FAN Hongtao, SUI Dianpeng, ZHAO Lixing. Preparation of Cobalt(Ⅱ) Ion Imprinted Silica Gel Sorbents by Surface Imprinting Technique and Its Adsorption Properties[J]. Chem J Chinese Univ, 2011,32(12):2902-2907.  

    14. [14]

      Li J, Zhang L, Wei G. Highly Sensitive and Doubly Orientated Selective Molecularly Imprinted Electrochemical Sensor for Cu2+[J]. Biosens Bioelectron, 2015,69:316-320. doi: 10.1016/j.bios.2015.03.010

    15. [15]

      Kokkios C, Economou A, Raptis I. Lithographically Fabricated Disposable Bismuth-Film Electrodes for the Trace Determination of Pb(Ⅱ) and Cd(Ⅱ) by Anodic Stripping Voltammetry[J]. Electrochim Acta, 2008,53(2):5294-5299.  

    16. [16]

      Hummers W S, Offeman R E. Functionalized Graphene and Graphene Oxide:Materials Synthesis and Electronic Applications[J]. J Am Chem Soc, 1958,80:1339-1339. doi: 10.1021/ja01539a017

    17. [17]

      Zhang Z H, Yang X, Zhang H B. Novel Molecularly Imprinted Polymers Based on Multi-Walled Carbon Nanotubes with Binary Functional Monomer for the Solid-Phase Extraction of Erythromycin from Chicken Muscle[J]. J Chromatogr B, 2011,879:1617-1624. doi: 10.1016/j.jchromb.2011.03.054

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    5. [5]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    19. [19]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

Metrics
  • PDF Downloads(2)
  • Abstract views(756)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return