Citation: LI Jingping, YANG Shihai, LIU Yang, BO Wenbo. Preparation of Attapulgite Clay Supported Nano TiO2-Fe3O4 Adsorbent and Removal of Cr(Ⅵ)[J]. Chinese Journal of Applied Chemistry, ;2019, 36(3): 324-334. doi: 10.11944/j.issn.1000-0518.2019.03.180112 shu

Preparation of Attapulgite Clay Supported Nano TiO2-Fe3O4 Adsorbent and Removal of Cr(Ⅵ)

  • Corresponding author: LI Jingping, tuzi111@126.com
  • Received Date: 13 April 2018
    Revised Date: 14 June 2018
    Accepted Date: 13 August 2018

    Fund Project: the Gansu Province Construction Science and Technology Project JK2010-31the Jinchuan Company Pre-Research Project Fund JCYY2013002the Gansu Natural Science Foundation 3ZX062-B25-002Supported by the Gansu Natural Science Foundation(No.3ZX062-B25-002), the Gansu Province Construction Science and Technology Project(No.JK2010-31), the Jinchuan Company Pre-Research Project Fund(No.JCYY2013002)

Figures(11)

  • Attapulgite clay(ATP) supported nano TiO2-Fe3O4(TiO2-Fe3O4-ATP) adsorbents were prepared by sol-gel method in one-pot, and its adsorption and desorption properties of Cr(Ⅵ) in simulated wastewater were studied. The structure and contents of the adsorbent were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Fourier transform infrared spectrometer(FT-IR) and EDS before and after nano TiO2-Fe3O4 loading, The effects of the ratio of reactants, adsorption time, pH value, temperature, dosage and initial concentration on the adsorption rate of Cr(Ⅵ) were studied. The best performance of the adsorbents was observed when the molar fraction of Ti in the total loading is 75%. The attapulgite adsorbent loaded with nano TiO2 and Fe3O4 has better adsorption effect on the removal of Cr(Ⅵ) when the mass of adsorbent is 0.6 g. When the initial concentration of Cr(Ⅵ) is less than 0.8 mg/L and the pH value is 6 at 20℃, the adsorption rate of Cr(Ⅵ) reached 79.8%. The adsorption of Cr(Ⅵ) by TiO2-Fe3O4-ATP can be described by Freundlich equation. At 20~40℃, the free energy(△G), enthalpy(△H) and entropy(△S) changes of the adsorption process were calculated. The results show that △G < 0, △S=-43.55 J/(mol·K), △H=-14.36 kJ/mol, indicating that the adsorption is spontaneous, exothermic and entropy reduction. Pseudo-first-order kinetic model, pseudo-second-order kinetic model and shell progressive model were studied for the kinetic data. The result shows that the adsorption process fits the quasi-second-order kinetic model. The rate control step of adsorption is mainly surface chemical reaction. The adsorption rate of TiO2-Fe3O4-ATP adsorbent can reach more than 65% after 4 times of recycling.
  • 加载中
    1. [1]

      Dilek Duranoǧlu, Andrzej W Trochimczuk, Ulker Beker. Kinetics and Thermodynamics of Hexavalent Chromium Adsorption onto Activated Carbon Derived from Acrylonitrile-Divinylbenzene Copolymer[J]. Chem Eng J, 2004,99(2):193-202.  

    2. [2]

      Cavendish H, Planta J. Adsorption of Nitrate and Cr(Ⅵ) by Cationic Polymer-Modified Granular Activated Carbon[J]. Chem Eng J, 2011,175(1):298-305.  

    3. [3]

      Li L, Fan L, Sun M. Adsorbent for Chromium Removal Based on Graphene Oxide Functionalized with Magnetic Cyclodextrin-Chitosan[J]. Colloids Surf B, 2013,58(7):169-175.  

    4. [4]

      WANG Aiqin, WANG Wenbo, ZHENG Yian, et al. The Dissociation of Attapulgite and Its Nanofunctional Composites[M]. Beijing:Science Press, 2014:106-107(in Chinese).

    5. [5]

      Chen H, Zhao Y, Wang A. Removal of Cu(Ⅱ) from Aqueous Solution by Adsorption onto Acid-Activated Palygorskite[J]. J Hazard Mater, 2007,149(2):346-354. doi: 10.1016/j.jhazmat.2007.03.085

    6. [6]

      Zhang J, Chen H, Wang A. Study on Superabsorbent Composite.Ⅲ.Swelling Behaviors of Polyacrylamide/Attapulgite Composite Based on Acidified Attapulgite and Organo-Attapulgite[J]. Eur Polym J, 2005,41(10):2423-2442.  

    7. [7]

      LONG Xiaoyan. Effects and Mechanisms for Fe/Ti Modification of Activated Carbon and Its Arsenic Removal from Water[D]. Huazhong Agricultural University, 2012(in Chinese).

    8. [8]

      LIU Yan, LIANG Pei, GUO Li. Study on the Adsorption Behavior of Heavy Metal Ions on Nanometer TiO2 Supported on Silica Gel[J]. J Chem Ind Eng, 2005,63(4):312-316.  

    9. [9]

      LI Xiazhang, YAO Chao, LU Xiaowang. TiO2/Attapulgite Nanocomposite as Photocatalyst:Impact of Phase Transition[J]. Sci Adv Mater, 2015,7(7):1400-1405. doi: 10.1166/sam.2015.2058

    10. [10]

      Li X L, Qi Y X, Li Y F. Novel Magnetic Beads Based on Sodium Alginate Gel Crosslinked by Zirconium(Ⅳ) and Their Effective Removal for Pb2+ in Aqueous Solutions by Using a Batch and Continuous Systems[J]. Bioresour Technol, 2013,142:611-619. doi: 10.1016/j.biortech.2013.05.081

    11. [11]

      Xie M J, Zeng L X, Zhang Q Y. Synthesis and Adsorption Behavior of Magnetic Microspheres Based on Chitosan/Organic Rectorite for Low-concentration Heavy Metal Removal[J]. J Alloys Comd, 2015,647:892-905. doi: 10.1016/j.jallcom.2015.06.065

    12. [12]

      GUO Binbin, OUYANG Jing, YANG Huaming. Adsorption Performance to Methylene Blue by Nano-Fe3O4 Assembled in Lumen of Halloysite Nanotubes[J]. J Chinese Ceram Soc, 2016,44(11):1655-1661.  

    13. [13]

      SUN Linlin, ZHOU Yehong, WANG Fei. Adsorption Properties of Carboxymethyl-β-cyclodextrin Functionalized Ferroferric Oxide Magnetic Nanocomposites on Rhodamine B[J]. Chinese J Appl Chem, 2015,32(1):110-117.  

    14. [14]

      Liu Y M, Ju X J, Xin Y. A Novel Smart Microsphere with Magnetic Core and Ion-recognizable Shell for Pb2+ Adsorption and Separation[J]. ACS Appl Mater Interfaces, 2014,6(12):9530-9542. doi: 10.1021/am501919j

    15. [15]

      Zhang J H, Zhang L L, Zhou S Y. Magnetically Separable Attapulgite-TiO2-FexOy Composites with Superior Activity Towrds Photodegradation of Methyl Orange under Visible Light Radiation[J]. J Ind Eng Chem, 2014,20:3884-3889. doi: 10.1016/j.jiec.2013.12.094

    16. [16]

      Jafari Z, Mokhtarian N, Hosseinzadeh G. Ag/TiO2/freeze-dried Graphene Nanocomposite as a High Performance Photocatalyst under Visible Light Irradiation[J]. J Energ Chem, 2016,25(3):393-402. doi: 10.1016/j.jechem.2016.01.013

    17. [17]

      LI Feng, LI Taohai. Systhesis and Photocatalytic Property of H0.8Ni0.4Ti1.6O4/TiO2 Layered Nancomposite[J]. J Natl Sci Xiangtan Univ, 2009(2):96-98. doi: 10.3969/j.issn.1000-5900.2009.02.017

    18. [18]

      LI Jingping, ZHENG Lichun, CHEN Feng. Study on the Adsorption Property of the Residue after Humid Acid Extraction to Cu2+[J]. Chem Bull, 2010,73(8):719-723.  

    19. [19]

      ZENG Xue, LUO Xuegang, ZHOU Jian. Adsorption of Fluorion onto Hydrolyzed Leather Waste Impregnated with Zirconium(Ⅵ)[J]. J Chem Ind Eng, 2016,67(4):1368-1377.  

    20. [20]

      YANG Jiajing. Study on the Performance for Adsorbing Heavy Metal Ions by the Organic Attapulgite[D]. Lanzhou: Lanzhou Jiaotong University, 2015(in Chinese).

    21. [21]

      WANG Guan. Study on the Performance of Heavy Metal Ions Adsorption of Nano TiO2 Loaded Attapulgite[D]. Lanzhou: Lanzhou Jiaotong University, 2013(in Chinese).

    22. [22]

      Corneio J, Hermosin M C. Structural Alteration of Sepiolite by Dry Grinding[J]. Clay Minerals J, 1988,23:391-398. doi: 10.1180/claymin.1988.023.4.06

    23. [23]

      Gionis V. On the Structure of Palygorskite by Mid-and Near-Infrared Spectroscopy[J]. Am Mineral, 2006,91:1125-1133. doi: 10.2138/am.2006.2023

    24. [24]

      Frost R L, Locos O B, Ruan H. Near-infrared and Mid-infrared Spectroscopic Study of Sepiolites and Palygorskites[J]. Vib Spectrosc, 2001,27:1-13. doi: 10.1016/S0924-2031(01)00110-2

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    4. [4]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    5. [5]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    6. [6]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    7. [7]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    8. [8]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    9. [9]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    12. [12]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    13. [13]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    14. [14]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    15. [15]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    16. [16]

      Siqi SunCheng ZhaoZhaohuan ZhangDing WangXinru YinJingting HanJinlei WeiYong ZhaoYongheng Zhu . Highly selective QCM sensor based on functionalized hierarchical hollow TiO2 nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature. Chinese Chemical Letters, 2025, 36(5): 109939-. doi: 10.1016/j.cclet.2024.109939

    17. [17]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    20. [20]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

Metrics
  • PDF Downloads(6)
  • Abstract views(353)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return