Citation: ZHANG Chenglu, WANG Jing, LI Jingyi, YU Xiangkun, YANG Jingyi, CAI Jinhua, LI Yizheng, WANG Huayu, GONG Rongqing. Synthesis of 1, 2, 4-Triazine-Phenanthroline Co(Ⅲ) Complexes and Their Fluorescence Recognition on Calf Thymus DNA[J]. Chinese Journal of Applied Chemistry, ;2019, 36(2): 212-222. doi: 10.11944/j.issn.1000-0518.2019.02.180161 shu

Synthesis of 1, 2, 4-Triazine-Phenanthroline Co(Ⅲ) Complexes and Their Fluorescence Recognition on Calf Thymus DNA

  • Corresponding author: ZHANG Chenglu, zhangchenglu@lnnu.edu.cn
  • Received Date: 8 May 2018
    Revised Date: 27 September 2018
    Accepted Date: 15 October 2018

    Fund Project: Supported by Technology Research Program of Liaoning Provincial Department of Education(No.2009A426)Technology Research Program of Liaoning Provincial Department of Education 2009A426

Figures(8)

  • Four 1, 2, 4-triazine-phenanthroling derivatives(ARTP1~ARTP4) were designed and synthesized successfully. ARTP1~ARTP4 were selected to coordinate with Co3+ to afford four novel complexes(Co-ARTP1~Co-ARTP4). The structures and properties of ARTP1~ARTP4 and Co-ARTP1~Co-ARTP4 were studied by means of Fourier transform infrared spectrometer(FT-IR), nuclear magnetic resonance(NMR), high resolution mass spectrometry(HRMS) and ultraviolet-visible spectroscopy(UV-Vis). As a result, the excitation peaks of the complexes are weakened and show red shift. The complexes interact with calf thymus DNA(CT-DNA) through the insert mode and the binding constants are Kb=4.78×105, 6.52×105, 5.97×105 and 6.01×105 L/mol, respectively, which indicates that the complexes are expected to be the DNA fluorescence probes. It provides the important theory references for further study on the interaction between small organic molecules with DNA.
  • 加载中
    1. [1]

      Masato K, Ramesh G, Yang J H. Stereocoutroiled Synthesis of Syn- and Anti-diol Epoxide Metabolites of Triphenylene[J]. Tetrahedron Lett, 1996,46:8267-8270.

    2. [2]

      Pascal D, Rafika J, Johanne L. Synthesis of Novel Diarylamino-1, 3, 5-Triazine Derivatives as FAK Inhibitors with Anti-angiogenic Activity[J]. Bioorg Med Chem, 2013,23(16):4552-4556. doi: 10.1016/j.bmcl.2013.06.038

    3. [3]

      Irannejad H, Amini M, Khodagholi F. Synthesis and in Vitro Evaluation of Novel 1, 2, 4-Triazine Derivatives as Neuroprotective Agents[J]. Bioorg Med Chem, 2010,18(12):4224-4230. doi: 10.1016/j.bmc.2010.04.097

    4. [4]

      Congreve M, Andrews S P, Dore A S. Discovery of 1, 2, 4-Triazine Derivatives as Adenosine A2A Antagonists Using Structure Based Drug Design[J]. J Med Chem, 2012,55(5):1898-1903. doi: 10.1021/jm201376w

    5. [5]

      Shaul M, Cohen Y. Novel Phenanthroline-Containing Trinuclear Double-Stranded Helicates:Self-recognition Between Helicates with Phenanthroline and Bipyridine Binding Sites[J]. J Org Chem, 1999,64(26):9358-936. doi: 10.1021/jo9908905

    6. [6]

      Sigman D S. Nuclease Activity of 1, 10-Phenanthroline-Copper Ion[J]. J Org Chem, 1986,19(6):180-186.  

    7. [7]

      GAO Yunhua, LI Haifeng, LI Jianxin. Quantitative Analysis of High-resolution Inductively Coupled Plasma Mass Spectrometry with Fluorescent Labeled DNA[J]. Chem J Chinese Univ, 2010,31(12):2360-2365.  

    8. [8]

      LI Yurong, CHEN Changbao, ZHOU Jie. Polyethylene Oxide Non-gel Sieving Capillary Electrophoresis Separation of Wide Molecular Weight Range DNA Fragments[J]. Chem J Chinese Univ, 2011,32(4):844-850.  

    9. [9]

      LIU Tao, ZHANG Conglei, CHEN Ping. Time-Resolved Spectroscopy Study of the Interaction Between Methylene Blue and Calf Thymus DNA[J]. Chem J Chinese Univ, 2011,32(8):1854-1859.  

    10. [10]

      ZENG Guopin, XIANG Dongshan, CAI Jinzhang. Determination of H1N1 Avian Influenza Virus DNA with Fluorescent Probe Ru(phen)2(dppx)2+[J]. Chem J Chinese Univ, 2011,32(8):1737-1743.  

    11. [11]

      Peng X J, Wu T, Fan J L. An Effective Minor Groove Binder as a Red Fluorescent Marker for Live-Cell DNA Imaging and Quantification[J]. Angew Chem Int Ed, 2011,50(18):4180-4183. doi: 10.1002/anie.v50.18

    12. [12]

      Gill M R, Garcia L J, Foster S J. A Ruthenium(Ⅱ) Polypyridyl Complex for Direct Imaging of DNA Structure in Living Cells[J]. Nat Chem, 2009,1:662-667. doi: 10.1038/nchem.406

    13. [13]

      Wojcik K, Dobrucki J W. Interaction of a DNA Intercalator DRAQ5, and a Minor Groove Binder SYTO17, with Chromatin in Live Cells-Influence on Chromatin Organization and Histone-DNA Interactions[J]. Cytometry Part A, 2008,73(6):555-562.

    14. [14]

      ZHANG Ying, SUN Xiangying, LIU Bin. Fluorescent Recognition of Single- and Double-Stranded Deoxyribonucleic Acid by Rhodamine B Self-assembled Monolayer[J]. Chinese J Anal Chem, 2009(5):665-670. doi: 10.3321/j.issn:0253-3820.2009.05.007

    15. [15]

      Andreea P, Vickie M, Orla H. Regulating Bioactivity of Cu2+ Bis-1, 10-Phenanthroline Artificial Metallonucleases with Sterically Functionalized Pendant Carboxylates[J]. J Med Chem, 2013,56(21):8599-8615. doi: 10.1021/jm401465m

    16. [16]

      Pitie M, Pratviel G. Activation of DNA Carbon Hydrogen Bonds by Metal Complexes[J]. Chem Rev, 2010,110(2):1018-1059. doi: 10.1021/cr900247m

    17. [17]

      SHUI Yonghong. Cobalt and Social life[J]. J Chengdu Text College, 2000,17:61-62.  

    18. [18]

      WANG Genzhi, WANG Qiuxia. Trace Elements and Human Health[J]. Stud Trace Elem Health, 2004,21(2):54-56. doi: 10.3969/j.issn.1005-5320.2004.02.028

    19. [19]

      Battaglia V, Compagnone A, Bandino A. Cobalt Induces Oxidative Stress in Isolated Liver Mitochondria Responsible for Permeability Transition and Intrinsic Apoptosis in Hepatocyte Primary Cultures[J]. Int J Biochem Cell Biol, 2009,41(3):586-594. doi: 10.1016/j.biocel.2008.07.012

    20. [20]

      Kiran S, Manject S B, Parikshit T. Synthesis and Characterization of Cobalt(Ⅱ), Nickel(Ⅱ), Copper(Ⅱ) and Zinc(Ⅱ) Complexes with Schiff Base Derived from 4-Amino-3-Mercapto-6-Methyl-5-oxo-1, 2, 4-Triazine[J]. Eur J Med Chem, 2007,42(3):394-402. doi: 10.1016/j.ejmech.2006.10.016

    21. [21]

      CAI Jinhua, WANG Yue, XU Deqing. Synthesis of Bioactive Aryl Imidazole Derivatives and Their Applicationsfor the pH-Induced Luminescence Sensing Probe Chem[J]. Chem J Chinese Univ, 2014,35(4):750-754.  

    22. [22]

      Ziad M, Ahmed S A, ElDouhaibi A S. NMR Studies and Electrophilic Properties of Triphenyl Phosphine-Trifluoromethanesulfonic Anhydride; A Remarkable Dehydrating Reagent System for the Conversion of Aldoximes into Nitriles[J]. Tetrahedron Lett, 2010,51(14):1826-1831. doi: 10.1016/j.tetlet.2010.01.119

    23. [23]

      Swapnil S D, Sameerana N H, Ravindra R J. Oxidative Fragmentation of Oxiranes to Nitriles with Hypervalent Iodine(Ⅴ) Reagents in Aqueous Ammonia[J]. Tetrahedron Lett, 2011,52(35):4533-4536. doi: 10.1016/j.tetlet.2011.06.068

    24. [24]

      Suzanne F, Stephen J E, Anthony F H. Nitrile Ylide Dimerization:Investigation of the Carbene Reactivity of Nitrile Ylides[J]. J Org Chem, 2004,69(14):4663-4669. doi: 10.1021/jo049748g

    25. [25]

      Heinrich W, Milena T. Novel 6-Azapteridines from Bifunctional 1, 2, 4-Triazines[J]. Collect Czech Chem Commun, 2003,68(5):965-974. doi: 10.1135/cccc20030965

    26. [26]

      Irini A Z, Wang Y, Zhao H Y. Synthesis of Substituted Fused Pyridines, Pyrazines and Pyrimidines by Sequential Ugi/Inverse Electron Demand Diels-Alder Transformations[J]. Tetrahedron Lett, 2009,50(42):5773-5776. doi: 10.1016/j.tetlet.2009.07.036

    27. [27]

      Zou X H, Ye B H, Li H. Mono- and bi-Nuclear Ruthenium(Ⅱ) Complexes Containing a New Asymmetric Ligand 3-(Pyrazin-2-yl)-as-Triazino[5, 6-f]1, 10-Phenanthroline:Synthesis, Characterization and DNA-Binding Properties[J]. J Chem Soc Dalton Trans, 1999,9:1423-1428.

    28. [28]

      Pabst G R, Pfüller O C, Sauer J. The New and Simple LEGO' System:Its Application for the Synthesis of 6-Oligopyridyl-1, 5, 12-Triazatriphenylenes[J]. Tetrahedron Lett, 1998,39(48):8825-8828. doi: 10.1016/S0040-4039(98)02044-9

    29. [29]

      Chao H, Qiu Z R, Cai L R. Mono-, Di-, and Tetranuclear Ruthenium(Ⅱ) Complexes Containing 3-(Pyridin-2-yl)-as-Triazino[5, 6-f]1, 10-Phenanthroline:Synthesis, Characterization, and Electrochemical and Photophysical Properties[J]. Inorg Chem, 2003,42(26):8823-8830. doi: 10.1021/ic034769z

    30. [30]

      Vlcek A A. Preparation of Co(dipy)2X2+ Complexes(X-=C1-, Br-, I-, NO2-) by Controlled Oxidative Processes[J]. Inorg Chem, 1967,7(6):1425-1427.

    31. [31]

      WANG Qiang. Synthesis, Characterization and Biological Activity of Methionine Schiff Base Complexes[D]. Ocean University of China, 2011(in Chinese) 

    32. [32]

      HU Yamin, WANG Xingming, ZHANG Huan. Research Progress of the Interactions Between Metal Complexes and DNA[J]. Chem Bioeng, 2007,24(8):1-4. doi: 10.3969/j.issn.1672-5425.2007.08.001

    33. [33]

      XIANG Pengzhi, LIU Limei. Research Methods and Progress of Interaction Between Metal Complexes and DNA[J]. J Hengshui Univ, 2011,13(1):33-35. doi: 10.3969/j.issn.1673-2065.2011.01.013

    34. [34]

      GAO Ting, ZHANG Wanju, WANG Fang. Application of UV Spectroscopy in the Study of Interaction Between Metal Complexes and DNA[J]. Guangzhou Chem Ind, 2010,38(5):23-25. doi: 10.3969/j.issn.1001-9677.2010.05.009

    35. [35]

      JIANG Caiwu. Novel Asymmetric Tridentate Polypyridine Ligands and Their Mixtures of Ruthenium(Ⅱ) Complexes Synthesis, Characterization, and Interaction with DNA[J]. Acta Chim Sin, 2004,62(7):692-696. doi: 10.3321/j.issn:0567-7351.2004.07.009

    36. [36]

      ZHEN Qixiong, YE Baohui, LIU Jingang. Syntheses and Insertion of Ligand Complexes Effect of Steric Hindrance on DNA Binding[J]. Chem J Chinese Univ, 1999,20(11):1661-1666. doi: 10.3321/j.issn:0251-0790.1999.11.001

    37. [37]

      KANG Yong, AI Shi. Interaction Between Inorganic Metal Complexes and DNA[J]. Biomed Eng Prog, 2011,31(1):24-28. doi: 10.3969/j.issn.1674-1242.2011.01.006

    38. [38]

      Ekmekci Z. Highly Selective Fluorescence'Turn-Off'Sensors for Cu2+ in Aqueous Environments[J]. Tetrahedron Lett, 2015,56(14):1878-1881. doi: 10.1016/j.tetlet.2015.02.099

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    10. [10]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    15. [15]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    20. [20]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

Metrics
  • PDF Downloads(1)
  • Abstract views(741)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return