Citation: WANG He, LUO Jing, LI Xiaojie, SHI Dongjian, CHEN Mingqing. Efficient Preparation of Polydopamine Nanoparticles by Precipitation[J]. Chinese Journal of Applied Chemistry, ;2019, 36(2): 155-160. doi: 10.11944/j.issn.1000-0518.2019.02.180150 shu

Efficient Preparation of Polydopamine Nanoparticles by Precipitation

  • Corresponding author: LI Xiaojie, xjli@jiangnan.edu.cn
  • Received Date: 3 May 2018
    Revised Date: 16 May 2018
    Accepted Date: 2 July 2018

    Fund Project: the Open Research Fund of Key Laboratory of Synthetic and Biological Colloids(Jiangnan University), Ministry of Education JDSJ2016-06the Fundamental Research Funds for the Central Universities JUSRP115A07the Jiangsu Planned Projects for Postdoctoral Research Funds 1601237CSupported by the Fundamental Research Funds for the Central Universities(No.JUSRP115A07), the Jiangsu Planned Projects for Postdoctoral Research Funds(No.1601237C), the Open Research Fund of Key Laboratory of Synthetic and Biological Colloids(Jiangnan University), Ministry of Education(No.JDSJ2016-06)

Figures(7)

  • In order to obtain dispersive and stable polydopamine nanoparticles, an aqueous dispersion of polydopamine nanoparticles was efficiently prepared using the "precipitation-redispersion" method. First, polydopamine nanoparticles dispersed in water/ethanol were prepared by a solution oxidation method, and then acetone was added to the dispersion to flocculate the polydopamine nanoparticles. The precipitate was collected, rinsed with acetone and dried, and then redispersed in water to obtain a purified aqueous dispersion of polydopamine nanoparticles. The polydopamine nanoparticles obtained by the acetone precipitation method are regular in shape with good dispersibility. The particle size distribution is about 250 nm, and has good storage stability and photothermal properties in water. Compared with conventional ultracentrifugation purification method, the yield increases by 57.4%. This method is essential for further applications in drug delivery and photothermal therapy/>
  • 加载中
    1. [1]

      Sedó J, Saiz-Poseu J, Busqué F. Catechol-based Biomimetic Functional Materials[J]. Adv Mater, 2013,25(5):653-701. doi: 10.1002/adma.201202343

    2. [2]

      Burzio L A, Waite J H. Cross-linking in Adhesive Quinoproteins:Studies with Model Decapeptides[J]. Biochemistry, 2000,39(36):11147-11153. doi: 10.1021/bi0002434

    3. [3]

      van der Leeden M C. Are Conformational Changes, Induced by Osmotic Pressure Variations, the Underlying Mechanism of Controlling the Adhesive Activity of Mussel Adhesive Proteins?[J]. Langmuir, 2005,21(24):11373-11379. doi: 10.1021/la0515468

    4. [4]

      Yang J, Cohen Stuart M A, Kamperman M. Jack of All Trades:Versatile Catechol Crosslinking Mechanisms[J]. Chem Soc Rev, 2014,43(24):8271-8298. doi: 10.1039/C4CS00185K

    5. [5]

      Lu Q, Danner E, Waite J H. Adhesion of Mussel Foot Proteins to Different Substrate Surfaces[J]. J R Soc Interface, 2013,10(79):20120759-20120759.  

    6. [6]

      Zhang C, Gong L, Xiang L. Deposition and Adhesion of Polydopamine on Surfaces of Varying Wettability[J]. ACS Appl Mater Interfaces, 2017,9(36):30943-30950. doi: 10.1021/acsami.7b09774

    7. [7]

      Zhao P C, Wei K C, Feng Q. Mussel-Mimetic Hydrogels with Defined Cross-linkers Achieved via Controlled Catechol Dimerization Exhibiting Tough Adhesion for Wet Biological Tissues[J]. Chem Commun, 2017,53(88):12000-12003. doi: 10.1039/C7CC07215E

    8. [8]

      Hofman A H, Van I H, Yang J. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox[J]. Adv Mater, 2018,30(19):1704640-1704678. doi: 10.1002/adma.v30.19

    9. [9]

      Liebscher J, Mrówczyński R, Scheidt H A. Structure of Polydopamine:A Never-Ending Story?[J]. Langmuir, 2013,29(33):10539-10548. doi: 10.1021/la4020288

    10. [10]

      Batul R, Tamanna T, Khaliq A. Recent Progress in the Biomedical Applications of Polydopamine Nanostructures[J]. Biomater Sci, 2017,5(7):1204-1229. doi: 10.1039/C7BM00187H

    11. [11]

      Liu Y, Ai K, Lu L. Polydopamine and Its Derivative Materials:Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields[J]. Chem Rev, 2014,114(9):5057-5115. doi: 10.1021/cr400407a

    12. [12]

      Ryu J H, Messersmith P B, Lee H. Polydopamine Surface Chemistry:A Decade of Discovery[J]. ACS Appl Mater Interfaces, 2018,10(9):7523-7540. doi: 10.1021/acsami.7b19865

    13. [13]

      Schlaich C, Wei Q, Haag R. Mussel-Inspired Polyglycerol Coatings with Controlled Wettability:From Superhydrophilic Towards Superhydrophobic Surface Coatings[J]. Langmuir, 2017,33(38):9508-9520. doi: 10.1021/acs.langmuir.7b01291

    14. [14]

      Orishchin N, Crane C C, Brownell M. Rapid Deposition of Uniform Polydopamine Coatings on Nanoparticle Surfaces with Controllable Thickness[J]. Langmuir, 2017,33(24):6046-6053. doi: 10.1021/acs.langmuir.7b00671

    15. [15]

      Kan B, Zhang Q, Li M. Solution-Processed Organic Solar Cells Based on Dialkylthiol-substituted Benzodithiophene Unit with Efficiency near 10%[J]. J Am Chem Soc, 2014,136(44):15529-15532. doi: 10.1021/ja509703k

    16. [16]

      Lynge M E, Philipp S, Brigitte S D. Recent Developments in Poly(dopamine)-Based Coatings for Biomedical Applications[J]. Nanomedicine, 2015,10(17):2725-2742. doi: 10.2217/nnm.15.89

    17. [17]

      Wang X, Wang C, Wang X. A Polydopamine Nanoparticle Knotted Poly(ethylene glycol) Hydrogel for On-Demand Drug Delivery and Chemo-photothermal Therapy[J]. Chem Mater, 2017,29(3):1370-1376. doi: 10.1021/acs.chemmater.6b05192

    18. [18]

      Mrówczyński R. Polydopamine-based Multifunctional(Nano)materials for Cancer Therapy[J]. ACS Appl Mater Interfaces, 2017,10(9):7541-7561.  

    19. [19]

      Lin X, Ma W, Wu H. Superhydrophobic Magnetic Poly(DOPAm-co-PFOEA)/Fe3O4/Cellulose Microspheres for Stable Liquid Marbles[J]. Chem Commun, 2016,52(9):1895-1898. doi: 10.1039/C5CC08842A

    20. [20]

      Zhang H, Zhao T, Newland B. Catechol Functionalized Hyperbranched Polymers as Biomedical Materials[J]. Prog Polym Sci, 2018,78(2):47-55.

    21. [21]

      Liu Y, Ai K, Liu J. Dopamine-Melanin Colloidal Nanospheres:An Efficient Near-infrared Photothermal Therapeutic Agent for in Vivo Cancer Therapy[J]. Adv Mater, 2013,25(9):1353-1359. doi: 10.1002/adma.v25.9

    22. [22]

      Liu S, Pan J, Liu J. Dynamically PEGylated and Borate-Coordination-Polymer-Coated Polydopamine Nanoparticles for Synergetic Tumor-Targeted, Chemo-photothermal Combination Therapy[J]. Small, 2018,14(13):1703968-1703980. doi: 10.1002/smll.v14.13

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    5. [5]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    6. [6]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    7. [7]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    10. [10]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    13. [13]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    14. [14]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    15. [15]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    18. [18]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    19. [19]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

Metrics
  • PDF Downloads(180)
  • Abstract views(8891)
  • HTML views(4543)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return