Research Progress on Bioimaging with the Second Near-infrared Fluorescence Probes
- Corresponding author: YU Changmin, iamcmyu@njtech.edu.cn LI Lin, iamlli@njtech.edu.cn
Citation:
SU Zhe, QIN Wenjing, BAI Lei, SUN Pengfei, YU Changmin, FAN Quli, LI Lin. Research Progress on Bioimaging with the Second Near-infrared Fluorescence Probes[J]. Chinese Journal of Applied Chemistry,
;2019, 36(2): 123-136.
doi:
10.11944/j.issn.1000-0518.2019.02.180116
Guo Z, Park S, Yoon J. Recent Progress in the Development of Near-infrared Fluorescent Probes for Bioimaging Applications[J]. Chem Soc Rev, 2014,43(1):16-29. doi: 10.1039/C3CS60271K
Shanmugam V, Selvakumar S, Yeh C S. Near-Infrared Light-Responsive Nanomaterials in Cancer Therapeutics[J]. Chem Soc Rev, 2014,43(17):6254-6287. doi: 10.1039/C4CS00011K
Sun Y, Qu C, Chen H. Novel Benzo-bis(1, 2, 5-thiadiazole) Fluorophores for in Vivo NIR-Ⅱ Imaging of Cancer[J]. Chem Sci, 2016,7(9):6203-6207. doi: 10.1039/C6SC01561A
Diao S, Hong G, Antaris A L. Biological Imaging Without Autofluorescence in the Second Near-infrared Region[J]. Nano Res, 2015,8(9):3027-3034. doi: 10.1007/s12274-015-0808-9
Smith A M, Mohs A M, Nie S. Tuning the Optical and Electronic Properties of Colloidal Nanocrystals by Lattice Strain[J]. Nat Nanotechnol, 2009,4(1):56-63.
Pansare V J, Hejazi S, Faenza W J. Review of Long-Wavelength Optical and NIR Imaging Materials:Contrast Agents, Fluorophores, and Multifunctional Nano Carriers[J]. Chem Mater, 2012,24(5):812-827. doi: 10.1021/cm2028367
Hong G, Diao S, Chang J. Through-Skull Fluorescence Imaging of the Brain in a New Near-infrared Window[J]. Nat Photonics, 2014,8(9):723-730. doi: 10.1038/nphoton.2014.166
Robinson J T, Hong G, Liang Y. In Vivo Fluorescence Imaging in the Second Near-infrared Window with Long Circulating Carbon Nanotubes Capable of Ultrahigh Tumor Uptake[J]. J Am Chem Soc, 2012,134(25):10664-10669. doi: 10.1021/ja303737a
Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991,354(6348):56-58. doi: 10.1038/354056a0
Balasubramanian K, Burghard M. Chemically Functionalized Carbon Nanotubes[J]. Small, 2010,1(2):180-192.
De La Zerda A, Zavaleta C, Keren S. Carbon Nanotubes as Photoacoustic Molecular Imaging Agents in Living Mice[J]. Nat Nanotechnol, 2008,3(9):557-562. doi: 10.1038/nnano.2008.231
Cherukuri P, Gannon C J, Leeuw T K. Mammalian Pharmacokinetics of Carbon Nanotubes Using Intrinsic Near-infrared Fluorescence[J]. Proc Natl Acad Sci USA, 2006,103(50):18882-18886. doi: 10.1073/pnas.0609265103
Chen Z, Tabakman S M, Goodwin A P. Protein Microarrays with Carbon Nanotubes as Multicolor Raman Labels[J]. Nat Biotechnol, 2008,26(11):1285-1292. doi: 10.1038/nbt.1501
Welsher K, Liu Z, Sherlock S P. A Route to Brightly Fluorescent Carbon Nanotubes for Near-infrared Imaging in Mice[J]. Nat Nanotechnol, 2009,4(11):773-780. doi: 10.1038/nnano.2009.294
Welsher K, Sherlock S P, Dai H. Deep-Tissue Anatomical Imaging of Mice Using Carbon Nanotube Fluorophores in the Second Near-infrared Window[J]. Proc Natl Acad Sci USA, 2011,108(22):8943-8948. doi: 10.1073/pnas.1014501108
Schramm P, Schellinger P D, Fiebach J B. Comparison of CT and CT Angiography Source Images with Diffusion-Weighted Imaging in Patients with Acute Stroke Within 6 Hours after Onset[J]. Stroke, 2002,33(10):2426-2432. doi: 10.1161/01.STR.0000032244.03134.37
Wright S N, Kochunov P, Mut F. Digital Reconstruction and Morphometric Analysis of Human Brain Arterial Vasculature from Magnetic Resonance Angiography[J]. Neuroimage, 2013,82:170-181. doi: 10.1016/j.neuroimage.2013.05.089
Huang C H, Chen C C, Siow T Y. High-Resolution Structural and Functional Assessments of Cerebral Microvasculature Using 3D Gas DeltaR2*-mMRA[J]. PLoS One, 2013,8(11)e78186. doi: 10.1371/journal.pone.0078186
Flohr T G, Mccollough C H, Bruder H. First Performance Evaluation of a Dual-source CT(DSCT) System[J]. EurJ Radiol, 2006,16(2):256-268. doi: 10.1007/s00330-005-2919-2
Jacoby C, Boring Y C, Beck A. Dynamic Changes in Murine Vessel Geometry Assessed by High-Resolution Magnetic Resonance Angiography:A 9.4T Study[J]. J Magn Reson Imaging, 2008,28(3):637-645. doi: 10.1002/jmri.v28:3
Paulus M J, Gleason S S, Kennel S J. High Resolution X-Ray Computed Tomography:An Emerging Tool for Small Animal Cancer Research[J]. Neoplasia, 2000,2(1/2):62-70.
Frangioni J. In Vivo Near-infrared Fluorescence Imaging[J]. Curr Opin Chem Biol, 2003,7(5):626-634. doi: 10.1016/j.cbpa.2003.08.007
Horton N G, Wang K, Kobat D. In Vivo Three-Photon Microscopy of Subcortical Structures within an Intact Mouse Brain[J]. Nat Photonics, 2013,7(3):205-209. doi: 10.1038/nphoton.2012.336
Drew P J, Shih A Y, Driscoll J D. Chronic Optical Access Through a Polished and Reinforced Thinned Skull[J]. Nat Methods, 2010,7(12):981-984. doi: 10.1038/nmeth.1530
Yang G, Pan F, Parkhurst C N. Thinned-Skull Cranial Window Technique for Long-Term Imaging of the Cortex in Live Mice[J]. Nat Protoc, 2010,5(2):201-208. doi: 10.1038/nprot.2009.222
Diao S, Blackburn J L, Hong G. Fluorescence Imaging in Vivo at Wavelengths Beyond 1500 nm[J]. Angew Chem Int Ed, 2015,54(49):14758-14762. doi: 10.1002/anie.201507473
Kim S, Fisher B, Eisler H J. Type-Ⅱ Quantum Dots:CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures[J]. J Am Chem Soc, 2003,125(38):11466-11467. doi: 10.1021/ja0361749
Nikolai G, I Igor L R, Maria R G. Labeling of Biocompatible Polymer Microcapsules with Near-Infrared Emitting Nanocrystals[J]. Nano Lett, 2003,3(3):369-372. doi: 10.1021/nl0259333
Gaponik N, Talapin D V, Rogach A L. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals:From Water to Nonpolar Organic Solvents[J]. Nano Lett, 2002,2(8):803-806. doi: 10.1021/nl025662w
Xie R, Peng X. Synthetic Scheme for High-Quality InAs Nanocrystals Based on Self-focusing and One-Pot Synthesis of InAs-Based Core-Shell Nanocrystals[J]. Angew Chem Int Ed, 2008,47(40):7677-7680. doi: 10.1002/anie.v47:40
Liu Z, Kumbhar A, Xu D. Coreduction Colloidal Synthesis of Ⅲ~Ⅴ Nanocrystals:The Case of InP[J]. Angew Chem Int Ed, 2008,47(19):3540-3542. doi: 10.1002/(ISSN)1521-3773
Liu W, Greytak A B, Lee J. Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand[J]. J Am Chem Soc, 2010,132(2):472-483. doi: 10.1021/ja908137d
Hyun B R, Chen H, Rey D A. Near-Infrared Fluorescence Imaging with Water-Soluble Lead Salt Quantum Dots[J]. J Phys Chem B, 2007,111(20):5726-5730. doi: 10.1021/jp068455j
Sun H, Zhang F, Wei H. The Effects of Composition and Surface Chemistry on the Toxicity of Quantum Dots[J]. J Mater Chem B, 2013,1(47):6485-6494. doi: 10.1039/c3tb21151g
Reiss P, Protiere M, Li L. Core/Shell Semiconductor Nanocrystals[J]. Small, 2009,5(2):154-168. doi: 10.1002/smll.200800841
Wang C, Wang Y, Xu L. Facile Aqueous-Phase Synthesis of Biocompatible and Fluorescent Ag2S Nanoclusters for Bioimaging:Tunable Photoluminescence from Red to Near Infrared[J]. Small, 2012,8(20):3137-3142. doi: 10.1002/smll.v8.20
Hocaoglu I, Demir F, Birer O. Emission Tunable, Cyto/Hemocompatible, Near-IR-Emitting Ag2S Quantum Dots by Aqueous Decomposition of DMSA[J]. Nanoscale, 2014,6(20):11921-11931. doi: 10.1039/C4NR02935F
Chen H, Li B, Zhang M. Characterization of Tumor-Targeting Ag2S Quantum Dots for Cancer Imaging and Therapy in Vivo[J]. Nanoscale, 2014,6(21):12580-12590. doi: 10.1039/C4NR03613A
Gu Y, Cui R, Zhang Z. Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging[J]. J Am Chem Soc, 2011,134(1):79-82.
Du Y, Bing X, Tao F. Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor[J]. J Am Chem Soc, 2010,132(5):1470-1471. doi: 10.1021/ja909490r
Zhang Y, Hong G, Zhang Y. Ag2S Quantum Dot:A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-infrared Window[J]. ACS Nano, 2012,6(5):3695-3702. doi: 10.1021/nn301218z
Shen S, Zhang Y, Peng L. Matchstick-Shaped Ag2S-ZnS Heteronanostructures Preserving both UV/Blue and Near-infrared Photoluminescence[J]. Angew Chem Int Ed, 2011,50(31):7115-7118. doi: 10.1002/anie.v50.31
Hong G, Robinson J T, Zhang Y. In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-infrared Region[J]. Angew Chem Int Ed, 2012,51(39):9818-9821. doi: 10.1002/anie.201206059
Dong B, Li C, Chen G. Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-infrared Window for in Vivo Imaging[J]. Chem Mater, 2013,25(12):2503-2509. doi: 10.1021/cm400812v
Chen G, Tian F, Zhang Y. Tracking of Transplanted Human Mesenchymal Stem Cells in Living Mice Using Near-Infrared Ag2S Quantum Dots[J]. Adv Funct Mater, 2014,24(17):2481-2488. doi: 10.1002/adfm.201303263
Tan M C, Kumar G A, Riman R E. Synthesis and Optical Properties of Infrared-Emitting YF3:Nd Nanoparticles[J]. J Appl Phys, 2009,106(6)063118. doi: 10.1063/1.3168442
Naczynski D J, Tan M C, Zevon M. Rare-Earth-Doped Biological Composites as in Vivo Shortwave Infrared Reporters[J]. Nat Commun, 2013,4(3):1345-1346.
Liu B, Chen X, Zou Y. A Benzo[J]. Polym Chem, 2013,4(3):470-476. doi: 10.1039/C2PY20580G
Li G, Shrotriya V, Huang J. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-organization of Polymer Blends[J]. Nat Mater, 2005,4(11):864-868. doi: 10.1038/nmat1500
Kawamura Y, Yanagida S, Forrest S R. Energy transfer in Polymer Electrophosphorescent Light Emitting Devices with Single and Multiple Doped Luminescent Layers[J]. J Appl Phys, 2002,92(1):87-93. doi: 10.1063/1.1479751
Burroughes J H, Bradley D D C, Brown A R. Light-Emitting Diodes Based on Conjugated Polymers[J]. Nature, 1990,347(6293):539-541. doi: 10.1038/347539a0
Facchetti A. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications[J]. Chem Mater, 2011,23(3):733-758. doi: 10.1021/cm102419z
Ong B S, Wu Y, Liu P. High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors[J]. J Am Chem Soc, 2004,126(11):3378-3379. doi: 10.1021/ja039772w
Hong G, Zou Y, Antaris A L. Ultrafast Fluorescence Imaging in Vivo with Conjugated Polymer Fluorophores in the Second Near-infrared Window[J]. Nat Commun, 2014,54206. doi: 10.1038/ncomms5206
Shou K, Tang Y, Chen H. Diketopyrrolopyrrole-Based Semiconducting Polymer Nanoparticles for in Vivo Second Near-infrared Window Imaging and Image-Guided Tumor Surgery[J]. Chem Sci, 2018,9(12):3105-3110. doi: 10.1039/C8SC00206A
Wu J, You L, Lan L. Semiconducting Polymer Nanoparticles for Centimeters-Deep Photoacoustic Imaging in the Second Near-infrared Window[J]. Adv Mater, 2017,29(41)1703403. doi: 10.1002/adma.v29.41
Guo B, Sheng Z, Kenry K. Biocompatible Conjugated Polymer Nanoparticles for Highly Efficient Photoacoustic Imaging of Orthotopic Brain Tumors in the Second Near-infrared Window[J]. Mater Horiz, 2017,4(6):1151-1156. doi: 10.1039/C7MH00672A
Jiang Y, Upputuri P K, Xie C. Broadband Absorbing Semiconducting Polymer Nanoparticles for Photoacoustic Imaging in Second Near-infrared Window[J]. Nano Lett, 2017,17(8):4964-4969. doi: 10.1021/acs.nanolett.7b02106
Yang Q, Ma Z, Wang H. Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-Ⅱ Window[J]. Adv Mater, 2017,29(12)1605497. doi: 10.1002/adma.v29.12
Zhu S, Yang Q, Antaris A L. Molecular Imaging of Biological Systems with a Clickable Dye in the Broad 800- to 1, 700-nm Near-infrared Window[J]. Proc Natl Acad Sci USA, 2017,114(5):962-967. doi: 10.1073/pnas.1617990114
Qian G, Zhong Z, Luo M. Simple and Efficient Near-infrared Organic Chromophores for Light-Emitting Diodes with Single Electroluminescent Emission Above 1000 nm[J]. Adv Mater, 2009,21(1):111-116. doi: 10.1002/adma.v21:1
Antaris A L, Chen H, Cheng K. A Small-Molecule Dye for NIR-Ⅱ Imaging[J]. Nat Mater, 2015,15(2):235-242.
Antaris A L, Chen H, Diao S. A High Quantum Yield Molecule-Protein Complex Fluorophore for Near-infrared Ⅱ Imaging[J]. Nat Commun, 2017,815269. doi: 10.1038/ncomms15269
Feng Y, Zhu S, Antaris A L. Live Imaging of Follicle Stimulating Hormone Receptors in Gonads and Bones Using Near Infrared Ⅱ Fluorophore[J]. Chem Sci, 2017,8(5):3703-3711. doi: 10.1039/C6SC04897H
Sun Y, Zeng X, Xiao Y. Novel Dual-Function Near-infrared Ⅱ Fluorescence and PET Probe for Tumor Delineation and Image-Guided Surgery[J]. Chem Sci, 2018,9(8):2092-2097. doi: 10.1039/C7SC04774F
Sun Y, Ding M, Zeng X. Novel Bright-Emission Small-Molecule NIR-Ⅱ Fluorophores for in Vivo Tumor Imaging and Image-Guided Surgery[J]. Chem Sci, 2017,8(5):3489-3493. doi: 10.1039/C7SC00251C
Li B N, Lu L F, Zhao M Y. An Efficient 1064 nm NIR-Ⅱ Excitation Fluorescent Molecular Dye for Deep-Tissue High-Resolution Dynamic Bioimaging[J]. Angew Chem Int Ed, 2018,57(25):7483-7487. doi: 10.1002/anie.201801226
Cosco E D, Caram J R, Bruns O T. Flavylium Polymethine Fluorophores for Near- and Shortwave Infrared Imaging[J]. Angew Chem Int Ed, 2017,56(42):13126-13129. doi: 10.1002/anie.201706974
Chen J R, Wong J B, Kuo P Y. Synthesis and Characterization of Coumarin-Based Spiropyran Photochromic Colorants[J]. Org Lett, 2008,10(21):4823-4826. doi: 10.1021/ol8018902
Shou K, Qu C, Sun Y. Multifunctional Biomedical Imaging in Physiological and Pathological Conditions Using a NIR-Ⅱ Probe[J]. Adv Funct Mater, 2017,27(23)1700995. doi: 10.1002/adfm.201700995
Tao Z, Hong G, Shinji C. Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at Wavelengths Longer than 1000 nm[J]. Angew Chem Int Ed, 2013,52(49):13002-13006. doi: 10.1002/anie.201307346
Xu G, Yan Q, Lv X. Imaging of Colorectal Cancers Using Activatable Nanoprobes with Second Near-infrared Window Emission[J]. Angew Chem Int Ed, 2018,57(14):3626-3630. doi: 10.1002/anie.201712528
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Yue WANG , Zhizhi GU , Jingyi DONG , Jie ZHU , Cunguang LIU , Guohan LI , Meichen LU , Jian HAN , Shengnan CAO , Wei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
.
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
Xuefei Leng , Yanshai Wang , Hai Wang , Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373