Citation: MENG Qingnan, DU Lulu, TANG Yufei, ZHAO Kang, ZHAO Lang. Preparation and Catalytic Properties of MnOX-C@SiO2 Core-Shell Particles[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1357-1363. doi: 10.11944/j.issn.1000-0518.2018.11.180235 shu

Preparation and Catalytic Properties of MnOX-C@SiO2 Core-Shell Particles

  • Corresponding author: MENG Qingnan, mengqn@xaut.edu.cn
  • Received Date: 5 July 2018
    Revised Date: 7 August 2018
    Accepted Date: 27 August 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.51502241)the National Natural Science Foundation of China 51502241

Figures(6)

  • To prepare catalysts with high activity in the Fenton reaction toward the decomposition of pollutants in water, SiO2 coated polyacrylate and manganese dioxide composite colloids (PAA-Mn@SiO2) were carbonized under N2 atmosphere. The synthesis process is very facile and effective. The as-prepared manganese oxides-carbon@SiO2 core shell type catalyst (MnOX-C@SiO2) was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and the specific surface area analysis. The results indicate that low-valenced manganese oxides (Mn3O4 and MnO) are formed in the MnOX-C@SiO2 due to the reductive atmosphere formed by the pyrolysis of PAA, which is beneficial for the enhancement of the catalytic performance in the Fenton reaction. In addition, the SiO2 shell not only effectively prevents the inside manganese oxide nanoparticles from getting larger but also stops the product from aggregating during carbonation. The carbon component in the core can further stabilize the manganese oxide nanoparticles and promote the enrichment of organic pollutants. The specific surface area of the MnOX-C@SiO2 is 317.3 m2/g, which is well dispersed in water. For the catalytic degradation of methylene blue (MB) solution via the Fenton process, the degradation rate of MB can reach ~96.8% only after 40 min.
  • 加载中
    1. [1]

      WU Zhongzheng, ZHU Weiju, WANG Dongmei. Preparation of Copper Oxide-Silica Porous Composites and Its Adsorption of Methylene Blue[J]. Chinese J Appl Chem, 2014,31(9):1089-1095.  

    2. [2]

      Debnath B, Roy A S, Kapri S. Efficient Dye Degradation Catalyzed by Manganese Oxide Nanoparticles and the Role of Cation Valence[J]. ChemistrySelect, 2016,1(14):4265-4273. doi: 10.1002/slct.201600806

    3. [3]

      Wang Y L, Zhu L, Yang X. Facile Synthesis of Three-Dimensional Mn3O4 Hierarchical Microstructures and Their Application in the Degradation of Methylene Blue[J]. J Mater Chem A, 2015,3(6):2934-2941. doi: 10.1039/C4TA05493H

    4. [4]

      Xu J H, Li D N, Chen Y. Constructing Sheet-On-Sheet Structured Graphitic Carbon Nitride/Reduced Graphene Oxide/Layered MnO2 Ternary Nanocomposite with Outstanding Catalytic Properties on Thermal Decomposition of Ammonium Perchlorate[J]. Nanomaterials, 2017,7(12):450-462. doi: 10.3390/nano7120450

    5. [5]

      Meng Q N, Du L L, Yang J. Well-Dispersed Small-Sized MnOx Nanoparticles and Porous Carbon Composites for Effective Methylene Blue Degradation[J]. Colloids Surf A, 2018,548:142-149. doi: 10.1016/j.colsurfa.2018.03.064

    6. [6]

      Meng Q N, Xiang S Y, Cheng W. Facile Synthesis of Manganese Oxide Loaded Hollow Silica Particles and Their Application for Methylene Blue Degradation[J]. J Colloid Interface Sci, 2013,405:28-34. doi: 10.1016/j.jcis.2013.05.025

    7. [7]

      Zhang S W, Fan Q H, Gao H. Formation of Fe3O4@MnO2 Ball-in-Ball Hollow Spheres as a High Performance Catalyst for Enhanced Catalytic Performances[J]. J Mater Chem A, 2016,4(4):1414-1422. doi: 10.1039/C5TA08400H

    8. [8]

      Rehman S, Tang T Y, Ali Z. Integrated Design of MnO2@Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfdes for Empowering Lithium Sulfur Batteries[J]. Small, 2017,13(20):87-94.

    9. [9]

      Meng Q N, Wang K, Tang Y F. Facile Synthesis of Porous Flower-Like Co3O4-SiO2 Composite for Catalytic Decoloration of Rhodamine B[J]. ChemistrySelect, 2017,2(32):10442-10448. doi: 10.1002/slct.201701884

    10. [10]

      WANG Cui, ZHANG Feiyun, LYU Rongwen. Gold Nanopaticle Surface Energy Transfer and Its Application for Thiols Detection[J]. Chinese J Appl Chem, 2018,35(1):59-67.  

    11. [11]

      Meng Q N, Wang K, Tang Y F. One-Pot Synthesis of Fe2O3 Loaded SiO2 Hollow Particles as Effective Visible Light Photo-Fenton Catalyst[J]. J Alloys Compd, 2017,722:8-16. doi: 10.1016/j.jallcom.2017.06.077

    12. [12]

      Xu H M, Jia J P, Guo Y F. Design of 3D MnO2/Carbon Sphere Composite for the Catalytic Oxidation and Adsorption of Elemental Mercury[J]. J Hazard Mater, 2018,342:69-76. doi: 10.1016/j.jhazmat.2017.08.011

    13. [13]

      Wang X Q, Dou L Y, Yang L. Hierarchical Structured MnO2@SiO2 Nanofibrous Membranes with Superb Flexibility and Enhanced Catalytic Performance[J]. J Hazard Mater, 2017,324:203-212. doi: 10.1016/j.jhazmat.2016.10.050

    14. [14]

      Liu C Q, Li K Z, Li H J. The Effect of Zirconium Incorporation on the Thermal Stability and Carbonized Product of Phenol-Formaldehyde Resin[J]. Polym Degrad Stab, 2014,102:180-185. doi: 10.1016/j.polymdegradstab.2014.01.013

    15. [15]

      Xu J, Deng Y Q, Zhang X M. Preparation, Characterization, and Kinetic Study of a Core-Shell Mn3O4@SiO2 Nanostructure Catalyst for CO Oxidation[J]. ACS Catal, 2014,4(11):4106-4115. doi: 10.1021/cs5011376

    16. [16]

      Bai Z C, Sun B, Fan N. Branched Mesoporous Mn3O4 Nanorods:Facile Synthesis and Catalysis in the Degradation of Methylene Blue[J]. Chem Eur J, 2012,18(17):5319-5324. doi: 10.1002/chem.v18.17

  • 加载中
    1. [1]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    5. [5]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    19. [19]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    20. [20]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(2)
  • Abstract views(814)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return