Citation: LIANG Xuechen, DENG Yukun, PEI Xiaopeng, ZHAI Kankan, XU Kun, TAN Ying, WANG Pixin. Effect of Non-freezing Water on the Mechanical Properties of Microspherical Composite Hydrogels[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1301-1308. doi: 10.11944/j.issn.1000-0518.2018.11.180013 shu

Effect of Non-freezing Water on the Mechanical Properties of Microspherical Composite Hydrogels

  • Corresponding author: XU Kun, xukun@ciac.ac.cn TAN Ying, tanying@ciac.ac.cn
  • Received Date: 16 January 2018
    Revised Date: 26 February 2018
    Accepted Date: 15 March 2018

    Fund Project: the National Natural Science Foundation of China 51673191the National Natural Science Foundation of China 21774124the Jilin Province Science and Technology Development Project 20160101306JCthe Jilin Province Science and Technology Development Project 201603101YYSupported by the National Natural Science Foundation of China(No.51673191, No.21774124), the Jilin Province Science and Technology Development Project(No.20160101306JC, No.201603101YY)

Figures(6)

  • The aim of this paper is to study the relationship between the ability to combine water and the toughness of hydrogel by means of differential scanning calorimetry (DSC). N-butyl methacrylate (BMA) or 2, 2, 3, 4, 4, 4-hexafluorobutyl methacrylate (HFBMA) and allylamine were chosen as monomers to synthesize core-shell nanospheres (named BMA nanosphere or HFBMA nanosphere). Then, the two nanospheres were used as macromolecular initiators and crosslinking agents to prepare nanospherical composite hydrogels (named BMA-H hydrogel or HFBMA-H hydrogel). DSC, Fourier transform infrared spectrometer (FTIR) and transmission electron microscopy (TEM) were used to characterize the structures and properties of hydrogels. The results of mechanical performance analysis indicate that the HFBMA-H hydrogel has better mechanical properties and its tensile strength and fracture elongation are up to 280 kPa and 3960%, respectively, which are much higher than those of BMA-H hydrogel (101 kPa, 2700%). DSC was used to investigate the state and proportion of water in composite hydrogels with different kinds of nanospheres. The results show that the non-freezing water content of HFBMA-H hydrogel is far higher than that of BMA-H hydrogel under the same water content, and the plasticizing effect of non-freezing water has an important effect on the mechanical strength of the hydrogel.
  • 加载中
    1. [1]

      Gong J P, Katsuyama Y, Kurokawa T. Double-Network Hydrogels with Extremely High Mechanical Strength[J]. Adv Mater, 2003,15(14):1155-1158. doi: 10.1002/adma.200304907

    2. [2]

      DUAN Yuanshou, JIA Fengxia, WANG Shuo. Synthesis and Thermosensitivity of Poly(N-isopropylacrylamide)/Hydrotalite Hydrogel[J]. Chinese J Appl Chem, 2018,35(1):102-108.  

    3. [3]

      CHANG Yanhong, DONG Xiaoning. Preparation of Porous Chitosan-graft-Poly(acrylic acid)/Na-Montmorillonite Superabsorbent Composite and Its Absorption Performance for Pb2+[J]. Chinese J Appl Chem, 2015,32(6):623-628.  

    4. [4]

      Okumura Y, Ito K. The Polyrotaxane Gel:A Topological Gel by Figure-of-Eight Cross-Links[J]. Adv Mater, 2001,13(7):485-487.  

    5. [5]

      Li W B, An H Y, Tan Y. Hydrophobically Associated Hydrogels Based on Acrylamide and Anionic Surface Active Monomer with High Mechanical Strength[J]. Soft Matter, 2012,8(18):5078-5086. doi: 10.1039/c2sm07200a

    6. [6]

      LI Pengchong, XU Kun, TAN Ying. Synthesis and Characterization of Microgel-Reinforced Polyampholyte Hydrogels[J]. Chinese J Appl Chem, 2015,32(4):386-391.  

    7. [7]

      Huang T, Xu H G, Jiao K X. A Novel Hydrogel with High Mechanical Strength:A Macromolecular Microsphere Composite Hydrogel[J]. Adv Mater, 2007,19(12):1622-1626. doi: 10.1002/(ISSN)1521-4095

    8. [8]

      Liang X C, Deng Y K, Pei X P. Tough, Rapid-Recovery Composite Hydrogels Fabricated via Synergistic Core-Shell Microgel Covalent Bonding and Fe3+ Coordination Cross-Linking[J]. Soft Matter, 2017,13(14):2654-2662. doi: 10.1039/C7SM00125H

    9. [9]

      TIAN Qin, ZHAO Xi'an, TANG Xiaozhen. Thermal Analysis of the Effect of Hydrophobic Microdomains on the Water State of 2-(N-ethylperfluorooctaneuslfoamido)ethyl Methacrylate Modified Gels[J]. Acta Polym Sin, 2003(2):180-185. doi: 10.3321/j.issn:1000-3304.2003.02.005

    10. [10]

      ZHANG Buning, LI Xinming, LU Hong. Study on Peculiarity of Water in Hydrogel-Hydrogel Composite[J]. Guangdong Chem Ind, 2008,6(35):37-41.  

    11. [11]

      Zhao L, Chi Y, Yuan Q. Phosphotungstic Acid Anchored to Amino-Functionalized Core-Shell Magnetic Mesoporous Silica Microspheres:A Magnetically Recoverable Nanocomposite with Enhanced Photocatalytic Activity[J]. J Colloid Interface Sci, 2013,390(1):70-77. doi: 10.1016/j.jcis.2012.08.059

    12. [12]

      ZHUANG Yinfeng, WANG Guowei, ZHU Zhongqi. Water States and Their Thermal Resistance in Temperature Sensitive NIPA Copolymer Hydrogels[J]. J Zhengzhou Univ(Nat Sci Ed), 2003,35(1):62-66. doi: 10.3969/j.issn.1671-6841.2003.01.016

    13. [13]

      CHEN Xiaogang, LI Wenbo, PENG Xiaohong. State of Water in PVA Hydrogels[J]. Guangdong Chem Ind, 2005(8):42-44. doi: 10.3969/j.issn.1007-1865.2005.08.016

    14. [14]

      JIANG Bo, CHEN Pu, XIANG Ming. The State of Water in Chemically Crosslinked PVA Hydrogel[J]. Polym Mater Sci Eng, 1994,1(1):130-132. doi: 10.3321/j.issn:1000-7555.1994.01.027

    15. [15]

      CHEN Feng, LIU Zhengying, HUA Sun. States of Water in Cellulose Hydrogels and Influence on the Crystallization of Cellulose[J]. Chem J Chinese Univ, 2015,36(10):2034-2039.  

    16. [16]

      Li W B, Xue F, Cheng R S. Synthesis, Characterization and Swelling of a Chemically Cross-Linked PVA Hydrogel[J]. Acta Polym Sin, 2006,5(5):671-675.

    17. [17]

      CHEN Hesheng, SHAO Jingchang. Analysis of Polyacryamide by Infrared Spectroscopy[J]. Anal Instrum, 2011(3):36-40. doi: 10.3969/j.issn.1001-232X.2011.03.009

    18. [18]

      LIU Wenguang, YAO Kangde, QI Wuqin. Advances in Hydrogel[J]. Polym Mater Sci Eng, 2002,18(5):54-57. doi: 10.3321/j.issn:1000-7555.2002.05.012

    19. [19]

      TAN Guoxin, CUI Yingde, YI Guobin. Influence of Different States of Water in Hydrogels on Tensile Properties[J]. J Chem Ind Eng (China), 2005,56(10):2019-2023. doi: 10.3321/j.issn:0438-1157.2005.10.039

  • 加载中
    1. [1]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    2. [2]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    3. [3]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    6. [6]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    7. [7]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    12. [12]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    13. [13]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    18. [18]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    19. [19]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    20. [20]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

Metrics
  • PDF Downloads(2)
  • Abstract views(1029)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return