Citation: LIN Hongyan, TIAN Yuan, WANG Qinglin, ZENG Ling, LIU Guocheng, ZHAO Yanyu. Synthesis and Fluorescence Properties of a Zinc Complex Based on the One-Dimensional Double-Helical Chains[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1372-1377. doi: 10.11944/j.issn.1000-0518.2018.11.170464 shu

Synthesis and Fluorescence Properties of a Zinc Complex Based on the One-Dimensional Double-Helical Chains

  • Corresponding author: LIN Hongyan, linhongyan_2015@126.com
  • Received Date: 25 December 2017
    Revised Date: 29 January 2018
    Accepted Date: 9 March 2018

    Fund Project: the National Natural Science Foundation of China 21501013the National Natural Science Foundation of China 21401010Supported by the National Natural Science Foundation of China(No.21501013, No.21401010)

Figures(4)

  • A zinc complex based on the one-dimensional (1D) double-helical chains was hydrothermally self-assembled by selecting the organic ligand N, N'-bis (3-pyridyl)malonamide (3-bpma), 1, 4-phenylenediacetic acid (H2 pda) and zinc nitrate, [Zn (3-bpma) (pda)]n (1), then structurally characterized by infrared spectroscopy (IR), element analysis, thermogravimetry (TG) and X-ray single-crystal diffraction. The single-crystal structural analysis reveals that this zinc complex is an orthorhombic system with space group Pna21, its cell parameters are:a=1.62512 (11) nm, b=1.15947 (8) nm, c=1.19282 (8) nm, α=90°, β=90°, γ=90°, V=2.2476 (3) nm3, Mr=513.80, Dc=1.518 g/cm3, Z=4, F (000)=1056, R1=0.0381, wR2=0.0669. The zinc ions are bridged by two kinds of ligands 3-bpma and pda to form a 1D double-helical chain, then the adjacent chains are extended into the 3D supramolecular network through the hydrogen bonding interactions. The title zinc complex shows a strong fluorescence emission characteristic. Moreover, this complex possesses remarkable fluorescent sensing behaviors for organic solvent molecules and metal ions, which may be a potential fluorescent sensing material for detecting nitrobenzene.
  • 加载中
    1. [1]

      Li J R, Sculley J, Zhou H C. Metal-Organic Frameworks for Separations[J]. Chem Rev, 2012,112(2):869-932. doi: 10.1021/cr200190s

    2. [2]

      Hu Z C, Deibert B J, Li J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection[J]. Chem Soc Rev, 2014,43(16):5815-5840. doi: 10.1039/C4CS00010B

    3. [3]

      Zhao S S, Yang J, Liu Y Y. Fluorescent Aromatic Tag-Functionalized MOFs for Highly Selective Sensing of Metal Ions and Small Organic Molecules[J]. Inorg Chem, 2016,55(5):2261-2273. doi: 10.1021/acs.inorgchem.5b02666

    4. [4]

      Lin R B, Li F, Liu S Y. A Noble-Metal-Free Porous Coordination Framework with Exceptional Sensing Efficiency for Oxygen[J]. Angew Chem Int Ed, 2013,52(50):13429-13433. doi: 10.1002/anie.201307217

    5. [5]

      Haldar R, Matsuda R, Kitagawa S. Amine-Responsive Adaptable Nanospaces:Fluorescent Porous Coordination Polymer for Molecular Recognition[J]. Angew Chem Int Ed, 2014,53(44):11772-11777. doi: 10.1002/anie.201405619

    6. [6]

      Liu Z Q, Zhao Y, Wang P. Metal-Organic Frameworks with 1, 4-Di(1H-imidazol-4-yl)benzene and Varied Carboxylate Ligands for Selectively Sensing Fe(Ⅲ) Ions and Ketone Molecules[J]. Dalton Trans, 2017,46(40):13943-13951. doi: 10.1039/C7DT02981K

    7. [7]

      Douvali A, Tsipis A C, Eliseeva S V. Turn-On Luminescence Sensing and Real-Time Detection of Traces of Water in Organic Solvents by a Flexible Metal-Organic Framework[J]. Angew Chem Int Ed, 2015,54(5):1651-1656. doi: 10.1002/anie.201410612

    8. [8]

      Wang H, Yang W T, Sun Z M. Mixed-Ligand Zn-MOFs for Highly Luminescent Sensing of Nitro Compounds[J]. Chem Asian J, 2013,8(5):982-989. doi: 10.1002/asia.v8.5

    9. [9]

      Yi F Y, Wang Y, Li J P. An Ultrastable Porous Metal-Organic Framework Luminescent Switch Towards Aromatic Compounds[J]. Mater Horiz, 2015,2(2):245-251. doi: 10.1039/C4MH00210E

    10. [10]

      Lin H Y, Sun J J, Liu G C. Self-assembly, Structures and Properties of Three New Ni(Ⅱ) Coordination Polymers Derived from Two Different Bis-pyridyl-Bis-amide Ligands and Two Aromatic Polycarboxylates[J]. J Chem Sci, 2017,129(1):9-20. doi: 10.1007/s12039-016-1213-y

    11. [11]

      Lin H Y, Rong X, Liu G C. Fluorescent Sensing and Electrocatalytic Properties of Three Zn(Ⅱ)/Co(Ⅱ) Coordination Complexes Containing Two Different Dicarboxylates and Two Various Bis(pyridyl)-Bis(amide) Ligands[J]. J Mol Struct, 2016,1119:396-403. doi: 10.1016/j.molstruc.2016.04.085

    12. [12]

      Wang X L, Luan J, Lin H Y. Metal(Ⅱ)-Organic Coordination Polymers Modulated by Two Isomeric Semirigid Bis-pyridyl-Bis-amide Ligands:Structures, Fluorescent Sensing Behavior, and Selective Photocatalysis[J]. ChemPlusChem, 2014,79(12):1691-1702.

    13. [13]

      Lin H Y, Lu H Z, Le M. Effect of Three Bis-pyridyl-Bis-amide Ligands with Various Spacers on the Structural Diversity of New Multifunctional Cobalt(Ⅱ) Coordination Polymers[J]. J Solid State Chem, 2015,226:66-73. doi: 10.1016/j.jssc.2015.02.002

    14. [14]

      Cheng P C, Kuo P T, Liao Y H. Ligand-Isomerism Controlled Structural Diversity of Zn(Ⅱ) and Cd(Ⅱ) Coordination Polymers from Mixed Dipyridyladipoamide and Benzenedicarboxylate Ligands[J]. Cryst Growth Des, 2013,13(2):623-632. doi: 10.1021/cg301311m

    15. [15]

      Chen Y Q, Liu S J, Li Y W. Mn(Ⅱ) Metal-Organic Frameworks Based on Mn3 Clusters:From 2D Layer to 3D Framework by the "Pillaring" Approach[J]. CrystEngComm, 2013,15(8):1613-1617. doi: 10.1039/c2ce26734a

    16. [16]

      Muthu S, Yip J H K, Vittal J J. Coordination Networks of Ag(Ⅰ) and N, N'-Bis(3-pyridinecarboxamide)-1, 6-hexane:Structures and Anion Exchange[J]. J Chem Soc, Dalton Trans, 2002(24):4561-4568. doi: 10.1039/B206680G

    17. [17]

      Yi F Y, Yang W T, Sun Z M. Highly Selective Acetone Fluorescent Sensors Based on Microporous Cd(Ⅱ) Metal-Organic Frameworks[J]. J Mater Chem, 2012,22(43):23201-23209. doi: 10.1039/c2jm35273g

    18. [18]

      Wan H G, Yang W T, Sun Z M. Mixed-Ligand Zn-MOFs for Highly Luminescent Sensing of Nitro Compounds[J]. Chem Asian J, 2013,8(5):982-989. doi: 10.1002/asia.v8.5

  • 加载中
    1. [1]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    2. [2]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    3. [3]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    16. [16]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    17. [17]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

Metrics
  • PDF Downloads(2)
  • Abstract views(364)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return