Citation: LIU Di, TONG Huan, YUAN Linjie, ZHANG Zipeng, MA Kangfu, YUAN Lin, ZHANG Wanyu, CHEN Lidong, WANG Xiangsheng, GUO Hongchen. Preparation of High Activity Oxidative Desulfurization Catalyst from Phosphomolybdic Acid and Titania Silica Nanocomposite[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1351-1356. doi: 10.11944/j.issn.1000-0518.2018.11.170462 shu

Preparation of High Activity Oxidative Desulfurization Catalyst from Phosphomolybdic Acid and Titania Silica Nanocomposite

  • Corresponding author: CHEN Lidong, lidongchhm0809@163.com GUO Hongchen, hongchenguo@dlut.edu.cn
  • Received Date: 21 December 2017
    Revised Date: 31 January 2018
    Accepted Date: 8 March 2018

    Fund Project: the Innovation and Entrepreneurship Project of College Students in Liaoning 201710165000363Supported by the Innovation and Entrepreneurship Project of College Students in Liaoning(No.201710165000363)

Figures(6)

  • High-performance titania-silica (TiO2-SiO2) nanocomposites were synthesized with a sol gel method. The composite catalyst was prepared by either in situ synthesis (HPMo-TiO2-SiO2-is) or the impregnation method (HPMo/TiO2-SiO2) using Keggin-structure phosphomolybdic acid and TiO2-SiO2. The structures of these catalysts were characterized by scanning electron micrographs (SEM), Fourier transform infrared spectrum (FT-IR), ultraviolet visible spectroscopy (UV-Vis), Brunauer-Emmett-Teller (BET) and X-ray powder diffraction pattern (XRD). The preservation of the Keggin structure in HPMo-TiO2-SiO2-is and HPMo/TiO2-SiO2 catalysts was confirmed. The results show that the synthesized catalysts are in nanometer size and the micropores and mesopores coexist. The catalytic oxidation desulfurization reaction was studied over synthesized catalysts with a model oil (n-octane solution of organic sulfur). Reaction conditions are listed as following:model oil/ethanol=10.0 mL/10.0 mL, catalyst 0.15 g, n (O)/n (S)=5, temperature 30~70℃ and time=3 h. It is clear that the catalytic properties of the HPMo-TiO2-SiO2-is and HPMo/TiO2-SiO2 are similar under optimized conditions. The conversion of dibenzothiophene is 96.0% and the content of sulphur is below 10 μg/g. Under the same conditions, the efficiencies of oxidative desulfurization decrease in the order of dibenzothiophene > benzothiophene > thiophene, and the result is influenced by the electron density on the sulfur atoms. The catalytic activity of the recycled HPMo-TiO2-SiO2-is catalyst is almost as the same as that of freshly prepared. The HPMo-TiO2-SiO2-is and HPMo/TiO2-SiO2 catalysts could be recycled and easily separated. These catalysts used herein are an ideal model for oxidation desulfurization of sulfur compounds.
  • 加载中
    1. [1]

      Song C S. An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel[J]. Catal Today, 2003,86(1/2/3/4):211-263.  

    2. [2]

      Ji H Y, Sun J, Wu P W. Silicotungstic Acid Immobilized on Lamellar Hexagonal Boron Nitride for Oxidative Desulfurization of Fuel Components[J]. Fuel, 2018,213(1):12-21.

    3. [3]

      Dizaji A K, Mortaheb H R, Mokhtarani B. Complete Oxidative Desulfurization Using Graphene Oxide-Based Phosphomolybdic Acid Catalyst:Process Optimization by Two Phase Mass Balance Approach[J]. Chem Eng J, 2018,335(1):362-372.

    4. [4]

      Shen C, Wang Y J, Xu J H. Synthesis of TS-1 on Porous Glass Beads for Catalytic Oxidative Desulfurization[J]. Chem Eng J, 2015,259(1):552-561.

    5. [5]

      Kong L Y, Li G, Wang X S. Mild Oxidation of Thiophene over TS-1/H2O2[J]. Catal Today, 2004,93/94/95(1):341-345.

    6. [6]

      Du S T, Li F, Sun Q M. A Green Surfactant-Assisted Synthesis of Hierarchical TS-1 Zeolites with Excellent Catalytic Properties for Oxidative Desulfurization[J]. Chem Commun, 2016,52(16):3368-3370. doi: 10.1039/C5CC08441E

    7. [7]

      Du S T, Chen X X, Sun Q M. A Non-chemically Selective Top-Down Approach Towards the Preparation of Hierarchical TS-1 Zeolites with Improved Oxidative Desulfurization Catalytic Performance[J]. Chem Commun, 2016,52(17):3580-3583. doi: 10.1039/C5CC10232D

    8. [8]

      Du S T, Sun Q M, Wang N. Synthesis of Hierarchical TS-1 Zeolites with Abundant and Uniform Intracrystalline Mesopores and Their Highly Efficient Catalytic Performance for Oxidation Desulfurization[J]. J Mater Chem A, 2017,5(17):7992-7998. doi: 10.1039/C6TA10044A

    9. [9]

      Jin C Z, Li G, Wang X S. Synthesis, Characterization and Catalytic Performance of Ti-Containing Mesoporous Molecular Sieves Assembled from Titanosilicate Precursors[J]. Chem Mater, 2007,19(7):1664-1670. doi: 10.1021/cm0625777

    10. [10]

      Bazyari A, Khodadadi A A, Mamaghani A H. Microporous Titania Silica Nanocomposite Catalyst Adsorbent for Ultra-deep Oxidative Desulfurization[J]. Appl Catal B:Environ, 2016,180(1):65-77.

    11. [11]

      Lv H Y, Ren W Z, Liao W P. Aerobic Oxidative Desulfurization of Model Diesel Using a B-type Anderson Catalyst[(C18H37)2N(CH3)2]3Co(OH)6Mo6O18·3H2O[J]. Appl Catal B:Environ, 2013,138/139(1):79-83.

    12. [12]

      Li C, Jiang Z X, Gao J B. Ultra-deep Desulfurization of Diesel:Oxidation with a Recoverable Catalyst Assembled in Emulsion[J]. Chem-Eur J, 2004,10(9):2277-2280. doi: 10.1002/(ISSN)1521-3765

    13. [13]

      CHEN Lidong, LIU Di, NIU Siqi. Oxidative Desulfurization of Organic Sulfides over Phosphotungstic Acid/Nano-ZSM-5 Composite Catalyst[J]. Chinese J Appl Chem, 2016,33(3):364-366.  

    14. [14]

      CHEN Lidong, TONG Huan, WANG Xuyang. Preparation of High Activity Oxidative Desulfurization Catalyst with Polycation and Heteropolyanion Keggin Structure[J]. Chinese J Appl Chem, 2017,34(11):1301-1306. doi: 10.11944/j.issn.1000-0518.2017.11.170011 

    15. [15]

      Chen L D, Wang X S, Guo X W. In Situ Nanocrystalline HZSM-5 Zeolites Encaged Heteropoly Acid H3PMo12O40 and Ni Catalyst for Hydroconversion of n-Octane[J]. Chem Eng Sci, 2007,62(16):4469-4478. doi: 10.1016/j.ces.2007.05.013

    16. [16]

      Guo Q, Sun K J, Feng Z C. A Thorough Investigation of the Active Titanium Species in TS-1 Zeolite by in Situ UV Resonance Raman Spectroscopy[J]. Chem-A Eur J, 2012,18(43):13854-13860. doi: 10.1002/chem.201201319

    17. [17]

      Zhu W S, Huang W L, Li H M. Polyoxometalate-Based Ionic Liquids as Catalysts for Deep Desulfurization of Fuels[J]. Fuel Process Tech, 2011,92(10):1842-1848. doi: 10.1016/j.fuproc.2011.04.030

    18. [18]

      Otsuki S, Nonaka T, Takashima N. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction[J]. Energy Fuels, 2000,14(6):1232-1239. doi: 10.1021/ef000096i

  • 加载中
    1. [1]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    10. [10]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    11. [11]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    16. [16]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    17. [17]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(10)
  • Abstract views(1104)
  • HTML views(269)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return