Citation: MA Li, XU Jingwei, YANG Chuanqi, LI Yunhui, MA Yuqin, ZHAO Yongxia. Effect of Polyhedral Oligomeric Silsesquioxanes-modified Gold Nanoparticles on 4-n-Pentyl-4'-ctanobiphenyl Liquid Crystal Properties[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1378-1383. doi: 10.11944/j.issn.1000-0518.2018.11.170450 shu

Effect of Polyhedral Oligomeric Silsesquioxanes-modified Gold Nanoparticles on 4-n-Pentyl-4'-ctanobiphenyl Liquid Crystal Properties

  • Corresponding author: MA Yuqin, myq9393@sina.com ZHAO Yongxia, zyx@ciac.ac.cn
  • Received Date: 12 December 2017
    Revised Date: 19 March 2018
    Accepted Date: 22 March 2018

    Fund Project: the Jilin Science and Technology Development Project 20170204038GXSupported by the Jilin Science and Technology Development Project(No. 20170204038GX)

Figures(5)

  • In order to effectively reduce the turn-on voltage of the liquid crystal device and low power consumption characteristics. Gold nanoparticles with an average particle diameter of about 5 nm were prepared by using polyhedral oligomeric silsesquioxanes (POSS) as the modification ligand and NaBH4 as the reductant to reduce the chloroauric acid. Gold nanoparticles were doped into nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB) with different mass fractions to study its effect on the viscosity, the threshold voltage and the phase transition temperature. The results show that the viscosity and the threshold voltage of 5CB are decreased by doping with POSS modified gold nanoparticles. Moreover, the phase transition temperature range of 5CB is broadened by addition of the gold nanoparticles.
  • 加载中
    1. [1]

      GAO Hongjin. Liquid Crystal Chemistry[M]. Beijing:Qinghua University Press, 2011:4-11, 53-80(in Chinese).

    2. [2]

      Suzuki M, Furue H, Kobayash S. Polarizerless Nanomaterials Doped Guest-Host LCD Exhibiting High Luminance and Good Legbility[J]. Mol Cryst Liq Cryst, 2003,368:39-60.

    3. [3]

      Lee W, Shih Y. Effects of Carbon-nanotube Doping on the Performance of TN-LCD[J]. J Soc Inf Display, 2007,13(9):741-748.

    4. [4]

      Lee W, Wang C, Shih Y. Effects of Carbon Nanosolids on the Electro-optical Properties of a Twisted Nematic Liquid-crystal Host[J]. Appl Phys Lett, 2005,85(4):514-518.

    5. [5]

      Miyama T, Thisayukta J H. Fast Switching of Frequency Modulation Twisted Nematic Liquid Crystal Display Fabricated by Doping Nanoparticles and Its Mechanism[J]. Jpn J Appl Phys, 2004,43(5A):2580-2584. doi: 10.1143/JJAP.43.2580

    6. [6]

      Park S, Stroud D. Surface-enhanced Plasmon Splitting in a Liquid-crystal-coated Gold Nanoparticle[J]. Phy Rev Lett, 2015,94(21):2170-2180.  

    7. [7]

      Muller J, Sonniehsen C, Feldmann J. Electrically Controlled Light Scattering with Single Metal Nanoparticles[J]. Appl Phys Lett, 2012,81(1):170-175.  

    8. [8]

      Thisayukta J, Shiraki H, Sakai Y. Dielectric Properties of Frequency Modulation Twisted Nematic LCDs Dopped with Silver Nanoparticles[J]. J Appl Phys, 2014,43(8):5429-5435.

    9. [9]

      Sano S, Miyama T, Kobayashi S. Enhancement of the Performance of LCDs by Doping the Nanoparticles of MgO:The Reduction of Operating Voltage and Response Times Particularl Delay Times and the Increase in the Optical Throughput[J]. J Disp:Technol, 2005,2(2):121-129.

    10. [10]

      Lin H, Jiang M, Wang L. Dopant Effects of Photoreactive ZnO Nanoparticles on Fast Response LC Materials in Optical Compensated Bend(OCB)mode Liquid Crystal Displays[J]. J Chinese Inst Chem Eng, 2010,33(7):1065-1080.

    11. [11]

      Glushchenko A, Cheon C, West J. Ferroelectric Particle in Liquid Crystals:Recent Frontiers[J]. Mol Cryst Liq Cryst, 2006,453:221-240.

    12. [12]

      Li F, West J, Glushchenko A. Ferroelectric Nanoparticle/Liquid-crystal Colloids for Display Aapplications[J]. J Soc Inf Display, 2009,14(6):521-529.

    13. [13]

      Ouskova E, Buchnev O. Dielectric Relaxation Spectroscopy of a Nematic Liquid Crystal Dopped with Ferroelectric Nanoparticles[J]. Liq Cryst, 2009,30(10):1230-1240.

    14. [14]

      Reshetnyak V, Shelestiuk S T. Fredericksz Transition Threshold in Nematic Liquid Crystals Filled with Ferroelectric Nanoparticles[J]. Mol Cryst Liq Cryst, 2008,454:202-210.

    15. [15]

      Li F, Buchnev O, West J. Orientational Coupling Amplification in Ferroelectric Nematic Colloids[J]. Phy Rev Lett, 2006,97(14):14780-14785.  

    16. [16]

      Glushchenko A, Cheon C, West J. Ferroelectric Particles in Liquid Crystals:Recent Frontier[J]. Mol Cryst Liq Cryst, 2009,30(10):1235-1239.

    17. [17]

      Li F, West J, Glushchenko A. Ferroelectric Nanoparticle/Liquid-crystal Colloids for Display Applications[J]. J Soc Inf Display, 2006,14(6):523-528. doi: 10.1889/1.2210802

    18. [18]

      Dolgov N, Yaroshehuk O. Electrooptic Properties of Colloidalsilica Filled Nematic[J]. Liq Cryst, 2009,29(4):586-598.

    19. [19]

      Suzuki M, Furue H, Kobayashi S. Polarizerless Nanomaterial Doped Guest-Host LCD Exhibiting High Luminance and Good Legibility[J]. Mol Cryst Liq Cryst, 2010,368:38-60.  

    20. [20]

      Muller J, Sonniehsen C, Feldmann J. Electrically Controlled Light Scattering with Signal Metal Nanoparticles[J]. Appl Phys Lett, 2008,81(1):170-175.

    21. [21]

      Kim J U, Cha S H, Shin K. Synthesis of Gold Nanoparticles from Gold(Ⅰ) Alkanethiolate Complexes with Supramolecular Structures Through Electron Beam Irradiation in TEM[J]. J Am Chem Soc, 2005,127(20):9962-9964.  

    22. [22]

      Ruhwandl R, Terentjev E. Long-range Forces and Aggregation of Colloid Particles in a Nematic Liquid Crystal[J]. Phys Rev E, 2007,55(3):2956-2962.

    23. [23]

      Kim B S, Mather P T. Amphiphilic Telechelics Incroporating Polyhedral Oligosilsesquioxane:Synthesis and Characterization[J]. Polym Phys, 2005,35(10):8378-8384.  

    24. [24]

      Xie X N, Gao X, Qi D. Chemically Linked AuNP-Alkane Network for Enhanced Photoemission and Field Emission[J]. ACS Nano, 2009,3(9):2722-2731. doi: 10.1021/nn9005335

    25. [25]

      GAO Hongjin. Liquid Crystal Chemistry[M]. Beijing:Qinghua University Press, 2011 4-11, 43-45(in Chinese).

    26. [26]

      Link S. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles[J]. J Phys Chem B, 2009,103(21):1212-1217.  

    27. [27]

      Nelson D, Miyama T. Toward a Tetravalent Chemsity of Colloids[J]. Nano Lett, 2008,2(1):121-123.

    28. [28]

      Zhang T Y, Xu J, WANG Y. Lower Threshold Voltage and Weak Frequency Modulation Response of Liquid Crystal Display Doped with Cds Nanoparticles[J]. Chinese J Electron Devi, 2008,31(1):97-99.  

    29. [29]

      Schadt M. The Twisted Nematic Effect:Liquid Crystal Displays and Liquid Crystal Materials[J]. Mol Cryst Liq Cryst, 1998,165:407-425.

    30. [30]

      Nelson D, Miyama T. Toward a Tetravalent Chemsity of Colloids[J]. Nano Lett, 2008,2(1):125-129.  

    31. [31]

      Xu J, Okada H, Onnagawa H. Liquid Crystal System as Molecular Machinery:Investigatin of Dynamic Impedance Matching Between Molecular Core and Terminal Group Using Rotor Bearing Mode[J]. Jpn J Appl Phys, 2000,3(4):1802-1809.

  • 加载中
    1. [1]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    2. [2]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    3. [3]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    4. [4]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    5. [5]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    8. [8]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    9. [9]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    10. [10]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    11. [11]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    12. [12]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    15. [15]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    18. [18]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    19. [19]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    20. [20]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

Metrics
  • PDF Downloads(5)
  • Abstract views(1217)
  • HTML views(606)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return