Citation: TIAN Yumeng, LI Xuemin, LI Xiaoxiao, HUAN Yan, YE Feng, YANG Xiaoniu. Effect of Molecular Cross-linking Degrees on the Morphology and Tribological Properties of 1, 4-Phenylene Diisocyanate-Based Polyurethane Elastomers[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1148-1154. doi: 10.11944/j.issn.1000-0518.2018.09.180217 shu

Effect of Molecular Cross-linking Degrees on the Morphology and Tribological Properties of 1, 4-Phenylene Diisocyanate-Based Polyurethane Elastomers

  • Corresponding author: YE Feng, yefeng@ciac.ac.cn
  • Received Date: 20 June 2018
    Revised Date: 26 June 2018
    Accepted Date: 26 June 2018

    Fund Project: the High-tech Industrialization Special Fund Project for Science and Technology Cooperation of Jilin Province and Chinese Academy of Sciences 2017SYHZ0019Supported by the Key Deployment Project of Scientific and Technological Innovation of the Chinese Academy of Sciences(No.KGFZD-135-18-011-02), the High-tech Industrialization Special Fund Project for Science and Technology Cooperation of Jilin Province and Chinese Academy of Sciences(No.2017SYHZ0019), the Changchun Science and Technology Project(No.16ss17), the Jilin Province Science and Technology Development Project(No. 20160204031G X)the Key Deployment Project of Scientific and Technological Innovation of the Chinese Academy of Sciences No.KGFZD-135-18-011-02the Jilin Province Science and Technology Development Project 20160204031G Xthe Changchun Science and Technology Project 16ss17

Figures(6)

  • The friction properties of polyurethane elastomers are of great significance in areas such as marine, automotive, and biomedical applications. However, the fine design of friction properties of such materials through chemical modification strategies still has urgent needs in research and application prospects. In this work, p-phenylene diisocyanate (PPDI) and polytetramethylene ether glycol (PTMG) were used, and the PPDI-based polyurethane elastomers with different degrees of cross-linking were synthesized through varing the molar ratio of two chain extenders of 1, 4-butanediol and trimethylolpropane. Results of the Fourier transform attenuated total reflection spectra (FTIR-ATR), wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) indicate that the crystallinity of both hard segment and soft segment in polyurethane elastomer is inhibited with the increase of cross-linking degree. Meanwhile, the results of mechanical test show that the elastic modulus of the material decreases, while the friction coefficient of PPDI-based polyurethane elastomer increases. In addition, the hysteresis loop curve shows that the change in the degree of cross-linking also affects the damping properties of the PPDI-based polyurethane elastomer, and the difference in the damping of the polyurethane elastomer is also reflected in the dependence of the friction performance on the rate. This work therefore proposes that by using different degrees of crossl-inking, the crystallinity of hard and soft segments in PPDI-based polyurethane can be changed, which leads to the difference in the elastic and the loss modulus of the material, and the friction properties can thus be controlled, which provides a simple-to-achieve and effective way for the regulation of frictional properties of PPDI-based polyurethane elastomers.
  • 加载中
    1. [1]

      Legge N R, Holden G, Schroeder H E. Thermoplastic Elastomers:A Comprehensive Review[M]. New York:Hanser Publishers, 1987.

    2. [2]

      Ertem S P, Yilgor E, Kosak C. Effect of Soft Segment Molecular Weight on Tensile Properties of Poly(propylene oxide) Based Polyurethaneureas[J]. Polymer, 2012,53(21):4614-4622. doi: 10.1016/j.polymer.2012.08.020

    3. [3]

      Cooper S L, Tobolsky A V. Properties of Linear Elastomeric Polyurethanes[J]. J Appl Polym Sci, 1966,10(12):1837-1844. doi: 10.1002/app.1966.070101204

    4. [4]

      Abouzahr S, Wilkes G L, Ophir Z. Structure-Property Behavior of Segmented Polyether-MDI-Butanediol Based Urethanes:Effect of Composition Ratio[J]. Polymer, 1982,23(7):1077-1086. doi: 10.1016/0032-3861(82)90411-6

    5. [5]

      Saiani A, Daunch W A, Verbeke H. Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane.1.Thermodynamic Investigation[J]. Macromolecules, 2001,34(26):9059-9068. doi: 10.1021/ma0105993

    6. [6]

      Elleuch R, Elleuch K, Salah B. Tribological Behavior of Thermoplastic Polyurethane Elastomers[J]. Mater Des, 2007,28(3):824-830. doi: 10.1016/j.matdes.2005.11.004

    7. [7]

      Yu M, Ji A H, Dai Z D. Effect of Microscale Contact State of Polyurethane Surface on Adhesion and Friction[J]. J Intell Mater Syst Struct, 2006,17(8/9):819-822.  

    8. [8]

      Krol P. Synthesis Methods, Chemical Structures and Phase Structures of Linear Polyurethanes. Properties and Applications of Linear Polyurethanes in Polyurethane Elastomers, Copolymers and Ionomers[J]. Prog Mater Sci, 2007,52(6):915-1015. doi: 10.1016/j.pmatsci.2006.11.001

    9. [9]

      Delebecq E, Pascault J P, Boutevin B. On the Versatility of Urethane/Urea Bonds:Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane[J]. Chem Rev, 2013,113(1)80e118.  

    10. [10]

      Klinedinst D B, Yilgor I, Yilgor E. The Effect of Varying Soft and Hard Segment Length on the Structure-Property Relationships of Segmented Polyurethanes Based on a Linear Symmetric Diisocyanate, 1, 4-Butanediol and PTMO Soft Segments[J]. Polymer, 2012,53(23):5358-5366. doi: 10.1016/j.polymer.2012.08.005

    11. [11]

      Cuvé L, Pascault J P, Boiteux G. Synthesis and Properties of Polyurethanes Based on Polyolefin:2.Semicrystalline Segmented Polyurethanes Prepared under Heterogeneous or Homogeneous Synthesis Conditions[J]. Polymer, 1991,32:343-352. doi: 10.1016/0032-3861(91)90024-D

    12. [12]

      Nozaki S, Masuda S, Kamitani K. Superior Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure[J]. Macromolecules, 2017,50(3):1008-1015. doi: 10.1021/acs.macromol.6b02044

    13. [13]

      De D, Gaymans R J. Polyurethanes with Narrow and Polydisperse Hardsegment Distributions[J]. Macromol Mater Eng, 2008,293(11):887-894. doi: 10.1002/mame.v293:11

    14. [14]

      Petrovic Z S, Javni I, Divjakovic V. Structure and Physical Properties of Segmented Polyurethane Elastomers Containing Chemical Crosslinks in the Hard Segment[J]. J Polym Sci Part B Polym Phys, 1998,36:221-235. doi: 10.1002/(ISSN)1099-0488

    15. [15]

      Yarmohammadi M, Komeili S, Shahidzadeh M. Studying Crosslinker Chemical Structure Effect on the Tuning Properties of HTPB-Based Polyurethane[J]. Propellants Explos Pyrotech, 2018,43:156-161. doi: 10.1002/prep.v43.2

    16. [16]

      Waterlot V, Couturier D, Waterlot C. Structure and Physical Properties in Crosslinked Polyurethanes[J]. J Appl Polym Sci, 2010,119(3):1742-1751.  

    17. [17]

      Narayan R, Chattopadhyay D K, Sreedhar B. Synthesis and Characterization of Crosslinked Polyurethane Dispersions Based on Hydroxylated Polyesters[J]. J Appl Polym Sci, 2010,99(1):368-380.  

    18. [18]

      Yang Z, Hu J, Liu Y. The Study of Crosslinked Shape Memory Polyurethanes[J]. Mater Chem Phys, 2006,98(2):368-372.  

    19. [19]

      Buckley C P, Prisacariu C, Caraculacu A. Novel Triol-Crosslinked Polyurethanes and Their Thermorheological Characterization as Shape-Memory Materials[J]. Polymer, 2007,48(5):1388-1396. doi: 10.1016/j.polymer.2006.12.051

    20. [20]

      Petrovic Z S, Ilavsky M, Dusial K. The Effect of Crosslinking on the Properties of Polyurethane Elastomers[J]. J Appl Polym Sci, 1991,42(2):391-398. doi: 10.1002/app.1991.070420211

    21. [21]

      Wu L, Guo J, Zhao S. Flame-Retardant and Crosslinking Modification of MDI-based Waterborne Polyurethane[J]. Polym Bull, 2016,74(6):1-18.  

    22. [22]

      Barrioni B R, de Carvalho S M, Oréfice R L. Synthesis and Characterization of Biodegradable Polyurethane Films Based on HDI with Hydrolyzable Crosslinked Bonds and a Homogeneous Structure for Biomedical Applications[J]. Mat Sci Eng C, 2015,52(3):22-30.  

    23. [23]

      Solanki A, Mehta J, Thakore S. Structure-Property Relationships and Biocompatibility of Carbohydrate Crosslinked Polyurethanes[J]. Carbohydr Polym, 2014,110(110):338-344.  

    24. [24]

      Coleman M M, Lee K H, Skrovanek D J. Hydrogen Bonding in Polymers.4.Infrared Temperature Studies of a Simple Polyurethane[J]. Macromolecules, 1986,19(8):2149-2157. doi: 10.1021/ma00162a008

    25. [25]

      Yılgör E, Yılgör I, Yurtsever E. Hydrogen Bonding and Polyurethane Morphology.I.Quantum Mechanical Calculations of Hydrogen Bond Energies and Vibrational Spectroscopy of Model Compounds[J]. Polymer, 2002,43(24):6551-6559. doi: 10.1016/S0032-3861(02)00567-0

    26. [26]

      Yildirim E, Yurtsever M, Yilgör E. Temperature-Dependent Changes in the Hydrogen Bonded Hard Segment Network and Microphase Morphology in a Model Polyurethane:Experimental and Simulation Studies[J]. J Polym Sci Part B Polym Phys, 2018,56(2):182-192. doi: 10.1002/polb.24532

    27. [27]

      Leung L M, Koberstein J T. DSC Annealing Study of Microphase Separation and Multiple Endothermic Behavior in Polyether-Based Polyurethane Block Copolymers[J]. Macromolecules, 1986,19(3):714-720. doi: 10.1021/ma00157a039

  • 加载中
    1. [1]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    2. [2]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    3. [3]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    6. [6]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    7. [7]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    8. [8]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    9. [9]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    10. [10]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    11. [11]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    12. [12]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    13. [13]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    14. [14]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    15. [15]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    16. [16]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    17. [17]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    18. [18]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    19. [19]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    20. [20]

      Yan Su Xiuyun Wang Huimin Guo Yanjuan Zhang Xinwen Zhang Yunting Shang Wenfeng Jiang . To Cultivate Scientific Literacy by Learning, Thinking, Practicing and Understanding, To Utilize the “Smart Eye” Expertise by Integrating of Knowledge and Action: Ideological and Political Construction of Analytical Chemistry Experiment Course. University Chemistry, 2024, 39(2): 196-202. doi: 10.3866/PKU.DXHX202308003

Metrics
  • PDF Downloads(2)
  • Abstract views(1117)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return