Citation: ZHAO Qun, ZHANG Lihua, ZHANG Yukui. Recent Advances in Proteomics[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 977-983. doi: 10.11944/j.issn.1000-0518.2018.09.180208 shu

Recent Advances in Proteomics

  • Corresponding author: ZHANG Lihua, lihuazhang@dicp.ac.cn
  • Received Date: 7 June 2018
    Revised Date: 9 June 2018
    Accepted Date: 9 June 2018

    Fund Project: the National Natural Science Foundation of China 21505136Supported by the China State Key Basic Research Program Grants(No.2017YFA0505003), the National Natural Science Foundation of China(No.21775150, No.21505136)the National Natural Science Foundation of China 21775150the China State Key Basic Research Program Grants 2017YFA0505003

  • Proteomics, as one of the foremost branches of science in the post-genome era, is mainly focused on the expression, translational modification and interaction of proteins in cells, tissues and organs. With the rapid advancement of precision medicine and life science, higher and higher requirements have been put forward for the development of analytical methods for proteomics. Herein, we summarized the new technologies for proteome research since 2013 and prospected the future of new technics and methods for protein research.
  • 加载中
    1. [1]

      Wolters D, Washburn M, Yates J R. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics[J]. Anal Chem, 2001,73(23):5683-5690. doi: 10.1021/ac010617e

    2. [2]

      Hebert A, Richards A, Bailey D. The One Hour Yeast Proteome[J]. Mol Cell Proteomics, 2014,13(1):339-347. doi: 10.1074/mcp.M113.034769

    3. [3]

      Kelstrup C, Jersie-Christensen R, Batth T. Rapid and Deep Proteomes by Faster Sequencing on a Benchtop Quadrupole Ultra-High-Field Orbitrap Mass Spectrometer[J]. J Proteome Res, 2014,13(12):6187-6195. doi: 10.1021/pr500985w

    4. [4]

      Ding C, Jiang J, Wei J. A Fast Workflow for Identification and Quantification of Proteomes[J]. Mol Cell Proteomics, 2013,12(8):2370-2380. doi: 10.1074/mcp.O112.025023

    5. [5]

      Zhao Q, Fang F, Liang Y. 1-Dodecyl-3-Methylimidazolium Chloride-Assisted Sample Preparation Method for Efficient Integral Membrane Proteome Analysis[J]. Anal Chem, 2014,86(15):7544-7550. doi: 10.1021/ac5013267

    6. [6]

      Zhao Q, Fang F, Shan Y. In-Depth Proteome Coverage by Improving Efficiency for Membrane Proteome Analysis[J]. Anal Chem, 2017,89(10):5179-5185. doi: 10.1021/acs.analchem.6b04232

    7. [7]

      Liu J, Wang F, Mao J. High-Sensitivity N-Glycoproteomic Analysis of Mouse Brain Tissue by Protein Extraction with a Mild Detergent of N-Dodecyl β-D-Maltoside[J]. Anal Chem, 2015,87(4):2054-2057. doi: 10.1021/ac504700t

    8. [8]

      Li Z, Huang M, Wang X. Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis[J]. Anal Chem, 2018,90(8):5430-5438. doi: 10.1021/acs.analchem.8b00661

    9. [9]

      Zhu Y, Piehowski P, Zhao R. Nanodroplet Processing Platform for Deep and Quantitative Proteome Profiling of 10~100 Mammalian Cells[J]. Nat Commun, 2018,9(1):882-892. doi: 10.1038/s41467-018-03367-w

    10. [10]

      Zhu Y, Clair G, Chrisler W. Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic Nanodroplet Sample Preparation and Ultrasensitive NanoLC-MS[J]. Angew Chem Int Ed Engl, 2018. doi: 10.1002/ange.201802843

    11. [11]

      Yuan H, Zhang S, Zhao B. Enzymatic Reactor with Trypsin Immobilized on Graphene Oxide Modified Polymer Microspheres to Achieve Automated Proteome Quantification[J]. Anal Chem, 2017,89(12):6324-6329. doi: 10.1021/acs.analchem.7b00682

    12. [12]

      Zhang X, Zhu S, Xiong Y. Development of a MALDI-TOF MS Strategy for the High-Throughput Analysis of Biomarkers:On-Target Aptamer Immobilization and Laser-Accelerated Proteolysis[J]. Angew Chem Int Ed, 2013,52(23):6055-6058. doi: 10.1002/anie.201300566

    13. [13]

      Fan C, Shi Z, Pan Y. Dual Matrix-Based Immobilized Trypsin for Complementary Proteolytic Digestion and Fast Proteomics Analysis with Higher Protein Sequence Coverage[J]. Anal Chem, 2014,86(3):1452-1458. doi: 10.1021/ac402696b

    14. [14]

      Piovesana S, Capriotti A, Cavaliere C. New Magnetic Graphitized Carbon Black TiO2 Composite for Phosphopeptide Selective Enrichment in Shotgun Phosphoproteomics[J]. Anal Chem, 2016,88(24):12043-12050. doi: 10.1021/acs.analchem.6b02345

    15. [15]

      Hwang L, Ayaz-Guner S, Gregorich Z. Specific Enrichment of Phosphoproteins Using Functionalized Multivalent Nanoparticles[J]. J Am Chem Soc, 2015,137(7):2432-2435. doi: 10.1021/ja511833y

    16. [16]

      Zhou H, Ye M, Dong J. Mohammed S. Robust Phosphoproteome Enrichment Using Monodisperse Microsphere-Based Immobilized Titanium(Ⅳ) Ion Affinity Chromatography[J]. Nat Protoc, 2013,8(3):461-480. doi: 10.1038/nprot.2013.010

    17. [17]

      Bian Y, Li L, Dong M. Ultra-Deep Tyrosine Phosphoproteomics Enabled by a Phosphotyrosine Superbinder[J]. Nat Chem Biol, 2016,12(11):959-968. doi: 10.1038/nchembio.2178

    18. [18]

      Li Y, Wang Y, Dong M. Sensitive Approaches for the Assay of the Global Protein Tyrosine Phosphorylation in Complex Samples Using a Mutated SH2 Domain[J]. Anal Chem, 2017,89(4):2304-2311. doi: 10.1021/acs.analchem.6b03812

    19. [19]

      Zhu J, Sun Z, Cheng K. Comprehensive Mapping of Protein N-Glycosylation in Human Liver by Combining Hydrophilic Interaction Chromatography and Hydrazide Chemistry[J]. J Proteome Res, 2014,13(3):1713-1721. doi: 10.1021/pr401200h

    20. [20]

      Dong X, Qin H, Mao J. In-Depth Analysis of Glycoprotein Sialylation in Serum Using a Dual-Functional Material with Superior Hydrophilicity and Switchable Surface Charge[J]. Anal Chem, 2017,89(7):3966-3972. doi: 10.1021/acs.analchem.6b04394

    21. [21]

      Liu J, Yang K, Shao W. Boronic Acid-Functionalized Particles with Flexible Three-Dimensional Polymer Branch for Highly Specific Recognition of Glycoproteins[J]. ACS Appl Mater Interfaces, 2016,8(15):9552-9556. doi: 10.1021/acsami.6b01829

    22. [22]

      Zhang W, Liu T, Dong H. Synthesis of a Highly Azide-Reactive and Thermosensitive Biofunctional Reagent for Efficient Enrichment and Large-Scale Identification of O-GlcNAc Proteins by Mass Spectrometry[J]. Anal Chem, 2017,89(11):5810-5817. doi: 10.1021/acs.analchem.6b04960

    23. [23]

      Ordureau A, Munch C, Harper J. Quantifying Ubiquitin Signaling[J]. Mol Cell, 2015,58(4):660-676. doi: 10.1016/j.molcel.2015.02.020

    24. [24]

      Beaudette P, Popp O, Dittmar G. Proteomic Techniques to Probe the Ubiquitin Landscape[J]. Proteomics, 2016,16(2):273-287. doi: 10.1002/pmic.201500290

    25. [25]

      Gao Y, Li Y, Zhang C. Enhanced Purification of Ubiquitinated Proteins by Engineered Tandem Hybrid Ubiquitin-binding Domains(ThUBDs)[J]. Mol Cell Proteomics, 2016,15(4):1381-1396. doi: 10.1074/mcp.O115.051839

    26. [26]

      Rardin M, Newman J, Held J. Label-free Quantitative Proteomics of the Lysine Acetylome in Mitochondria Identifies Substrates of SIRT3 in Metabolic Pathways[J]. Proc Natl Acad Sci, 2013,110(16):6601-6606. doi: 10.1073/pnas.1302961110

    27. [27]

      Li L, Yan G, Zhang X. Isolation of Acetylated and Free N-Terminal Peptides from Proteomic Samples Based on Tresyl-Functionalized Microspheres[J]. Talanta, 2015,144:122-128. doi: 10.1016/j.talanta.2015.05.068

    28. [28]

      Yang X, Dong X, Zhang K. A Molecularly Imprinted Polymer as an Antibody Mimic with Affinity for Lysine Acetylated Peptides[J]. J Mat Chem B, 2016,4(5):920-928. doi: 10.1039/C5TB02620B

    29. [29]

      Garnett G, Starke M, Shaurya A. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics[J]. Anal Chem, 2016,88(7):3697-3703. doi: 10.1021/acs.analchem.5b04508

    30. [30]

      Zhang Y, Liu W, Sohai M. Enzymatic Allylation of Catechols[J]. Chem Lett, 2015,44(7):949-951. doi: 10.1246/cl.150237

    31. [31]

      Yan J, Guo C, Liu X. A Simple and Highly Stable Free-flow Electrophoresis Device with Thermoelectric Cooling System[J]. J Chromatogr A, 2013,1321:119-126. doi: 10.1016/j.chroma.2013.10.058

    32. [32]

      Yang J, Lee J, Moon M. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation[J]. Anal Chem, 2015,87(12):6342-6348. doi: 10.1021/acs.analchem.5b01207

    33. [33]

      Wunsch B, Smith J, Gifford S. Nanoscale Lateral Displacement Arrays for the Separation of Exosomes and Colloids Down to 20 nm[J]. Nat Nanotechnol, 2016,11:936-940. doi: 10.1038/nnano.2016.134

    34. [34]

      Battle K, Jackson J, Witek M. Solid-phase Extraction and Purification of Membrane Proteins Using a UV-modified PMMA Microfluidic Bioaffinity μSPE Device[J]. Analyst, 2014,139(6):1355-1363. doi: 10.1039/C3AN02400H

    35. [35]

      Fang F, Zhao Q, Li X. Dissolving Capability Difference Based Sequential Extraction:A Versatile Tool for In-depth Membrane Proteome Analysis[J]. Anal Chim Acta, 2016,945:39-46. doi: 10.1016/j.aca.2016.09.032

    36. [36]

      Weng Y, Sui Z, Shan Y. Effective Isolation of Exosomes with Polyethylene Glycol from Cell Culture Supernatant for In-depth Proteome Profiling[J]. Analyst, 2016,141(15):4640-4646. doi: 10.1039/C6AN00892E

    37. [37]

      Weng Y, Qu Y, Jiang H. An Integrated Sample Pretreatment Platform for Quantitative N-Glycoproteome Analysis with Combination of On-line Glycopeptide Enrichment, Deglycosylation and Dimethyl Labeling[J]. Anal Chim Acta, 2014,833:1-8. doi: 10.1016/j.aca.2014.04.037

    38. [38]

      Chen Q, Yan G, Gao M. Ultrasensitive Proteome Profiling for 100 Living Cells by Direct Cell Injection, Online Digestion and Nano-LC-MS/MS Analysis[J]. Anal Chem, 2015,87(13):6674-6680. doi: 10.1021/acs.analchem.5b00808

    39. [39]

      Liu F, Ye M, Pan Y. Integration of Cell Lysis, Protein Extraction, and Digestion into One Step for Ultrafast Sample Preparation for Phosphoproteome Analysis[J]. Anal Chem, 2014,86(14):6786-6791. doi: 10.1021/ac5002146

    40. [40]

      Kim M, Pinto S, Getnet D. A Draft Map of the Human Proteome[J]. Nature, 2014,509(7502):575-581. doi: 10.1038/nature13302

    41. [41]

      Wilhelm M, Schlegl J, Hahne H. Mass-spectrometry-based Draft of the Human Proteome[J]. Nature, 2014,509(7502):582-587. doi: 10.1038/nature13319

    42. [42]

      Uhlen M, Fagerberg L, Hallstroem B. Tissue-based Map of the Human Proteome[J]. Science, 2015,347(6220):394-404.  

    43. [43]

      Chen Y, Li Y, Zhong J. Identification of Missing Proteins Defined by Chromosome-Centric Proteome Project in the Cytoplasmic Detergent-Insoluble Proteins[J]. J Proteome Res, 2015,14(9):3693-3709. doi: 10.1021/pr501103r

    44. [44]

      Chen L, Zhai L, Li Y. Development of Gel-Filter Method for High Enrichment of Low-Molecular Weight Proteins from Serum[J]. PLoS One, 2015,10(2)e0115862. doi: 10.1371/journal.pone.0115862

    45. [45]

      Ding C, Chan D, Liu W. Proteome-wide Profiling of Activated Transcription Factors with a Concatenated Tandem Array of Transcription Factor Response Elements[J]. Proc Natl Acad Sci, 2013,110(17):6771-6776. doi: 10.1073/pnas.1217657110

    46. [46]

      Meier F, Geyer P, Virreira Winter S. BoxCar Acquisition Method Enables Single-shot Proteomics at a Depth of 10, 000 Proteins in 100 Minutes[J]. Nat Methods, 2018. doi: 10.1038/s41592-018-0003-5

    47. [47]

      Zhou Y, Shan Y, Wu Q. Mass Defect-based Pseudo-isobaric Dimethyl Labeling for Proteome Quantification[J]. Anal Chem, 2013,85(22):10658-10663. doi: 10.1021/ac402834w

    48. [48]

      Di Y, Zhang Y, Zhang L. MdFDIA:A Mass Defect Based Four-Plex Data-Independent Acquisition Strategy for Proteome Quantification[J]. Anal Chem, 2017,89(19):10248-10255. doi: 10.1021/acs.analchem.7b01635

    49. [49]

      Tan D, Li Q, Zhang M. Trifunctional Cross-linker for Mapping Protein-protein Interaction Networks and Comparing Protein Conformational States[J]. eLife, 2016. doi: 10.7554/eLife.12509

    50. [50]

      Ding Y, Fan S, Li S. Increasing the Depth of Mass-Spectrometry-Based Structural Analysis of Protein Complexes Through the Use of Multiple Cross-Linkers[J]. Anal Chem, 2016,88(8):4461-4469. doi: 10.1021/acs.analchem.6b00281

    51. [51]

      Liu F, Rijkers D, Post H. Proteome-wide Profiling of Protein Assemblies by Cross-linking Mass Spectrometry[J]. Nat Method, 2015,12(12):1179-1184. doi: 10.1038/nmeth.3603

    52. [52]

      Wu X, Chavez J, Schweppe D. In Vivo Protein Interaction Network Analysis Reveals Porin-localized Antibiotic Inactivation in Acinetobacter Baumannii Strain AB5075[J]. Nat Commun, 2016,7:13414-13427. doi: 10.1038/ncomms13414

    53. [53]

      Chi H, He K, Yang B. pFind-Alioth:A Novel Unrestricted Database Search Algorithm to Improve the Interpretation of High-resolution MS/MS Data[J]. J Proteomics, 2015,125:89-97. doi: 10.1016/j.jprot.2015.05.009

    54. [54]

      Wenger C, Coon J. A Proteomics Search Algorithm Specifically Designed for High-resolution Tandem Mass Spectra[J]. J Proteome Res, 2013,12(3):1377-1386. doi: 10.1021/pr301024c

    55. [55]

      Zhang S, Wu Q, Shan Y. A Paired Ions Scoring Algorithm Based on Morpheus for Simultaneous Identification and Quantification of Proteome Samples Prepared by Isobaric Peptide Termini Labeling Strategies[J]. Proteomics, 2015,15(11):1781-8. doi: 10.1002/pmic.v15.11

    56. [56]

      Liu M, Zeng W, Fang P. pGlyco 2.0 Enables Precision N-Glycoproteomics with Comprehensive Quality Control and One-step Mass Spectrometry for Intact Glycopeptide Identification[J]. Nat Commun, 2017,8(1):438-451. doi: 10.1038/s41467-017-00535-2

    57. [57]

      Tyanova S, Temu T, Cox J. The MaxQuant Computational Platform for Mass Spectrometry-based Shotgun Proteomics[J]. Nat Protoc, 2016,11(12):2301-2319. doi: 10.1038/nprot.2016.136

    58. [58]

      Liu C, Song C, Yuan Z. pQuant Improves Quantitation by Keeping Out Interfering Signals and Evaluating the Accuracy of Calculated Ratios[J]. Anal Chem, 2014,86(11):5286-5294. doi: 10.1021/ac404246w

    59. [59]

      Chang C, Zhang J, Han M. SILVER:An Efficient Tool for Stable Isotope Labeling LC-MS Data Quantitative Analysis with Quality Control Methods[J]. Bioinformatics, 2014,30(4):586-587. doi: 10.1093/bioinformatics/btt726

  • 加载中
    1. [1]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    6. [6]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    11. [11]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    12. [12]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    13. [13]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    14. [14]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    15. [15]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    17. [17]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    18. [18]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    19. [19]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    20. [20]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

Metrics
  • PDF Downloads(0)
  • Abstract views(447)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return