Citation: SHAO Shiyang, DING Junqiao, WANG Lixiang. Recent Advances on Thermally Activated Delayed Fluorescence Polymers[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 993-1004. doi: 10.11944/j.issn.1000-0518.2018.09.180202 shu

Recent Advances on Thermally Activated Delayed Fluorescence Polymers

  • Corresponding author: DING Junqiao, lixiang@ciac.ac.cn WANG Lixiang, lixiang@ciac.ac.cn
  • Received Date: 1 June 2018
    Revised Date: 4 June 2018
    Accepted Date: 5 June 2018

    Fund Project: the National Natural Science Foundation of China 51573182the National Natural Science Foundation of China 91333205the 973 Project of the Ministry of Science and Technology 2015CB655000Supported by the National Natural Science Foundation of China(No.51573182, No.51203149, No.91333205), the 973 Project of the Ministry of Science and Technology(No.2015CB655000)the National Natural Science Foundation of China 51203149

Figures(4)

  • Thermally activated delayed fluorescence polymers can achieve 100% internal quantum efficiency by utilizing triplet excitons through enhanced reverse intersystem crossing process from the lowest triplet state to singlet state, thereby representing a promising approach toward low-cost and high-effiicnecy light-emitting polymers. Recently, great progress has been made on the material design and device performance of thermally activated delayed fluorescence polymers. This review is aimed to summarize the research progresses on thermally activated delayed fluorescence polymers, with the focus on the molecular design, photophysical characteristic and device performance of mainchain-and sidechain-type thermally activated delayed fluorescence polymers as well as thermally activated delayed fluorescence dendrimers. Finally, the perspectives and the key challenges on developing thermally activated delayed fluorescence polymers are also discussed.
  • 加载中
    1. [1]

      Burroughes J H, Bradley D D C, Brown A R. Light-Emitting-Diodes Based on Conjugated Polymers[J]. Nature, 1990,347(6293):539-541. doi: 10.1038/347539a0

    2. [2]

      Muller C D, Falcou A, Reckefuss N. Multi-colour Organic Light-Emitting Displays by Solution Processing[J]. Nature, 2003,421(6925):829-833. doi: 10.1038/nature01390

    3. [3]

      Berggren M, Nilsson D, Robinson N D. Organic Materials for Printed Electronics[J]. Nat Mater, 2007,6(1):3-5. doi: 10.1038/nmat1817

    4. [4]

      White M S, Kaltenbrunner M, Glowacki E D. Ultrathin, Highly Flexible and Stretchable PLEDs[J]. Nat Photonics, 2013,7(10):811-816. doi: 10.1038/nphoton.2013.188

    5. [5]

      Uoyama H, Goushi K, Shizu K. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence[J]. Nature, 2012,492(7428):234-238. doi: 10.1038/nature11687

    6. [6]

      Xie Y, Li Z. Thermally Activated Delayed Fluorescent Polymers[J]. J Polym Sci Part A:Polym Chem, 2017,55(4):575-584. doi: 10.1002/pola.28448

    7. [7]

      Yang Z, Mao Z, Xie Z. Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials[J]. Chem Soc Rev, 2017,46(3):915-1016. doi: 10.1039/C6CS00368K

    8. [8]

      Shao S Y, Ding J Q, Wang L X. Research Progress on Electroluminescent Polymers[J]. Acta Polym Sin, 2018(2):198-216.  

    9. [9]

      Liu Y, Li C, Ren Z. All-organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes[J]. Nat Rev Mater, 2018,3(4)18020. doi: 10.1038/natrevmats.2018.20

    10. [10]

      Nikolaenko A E, Cass M, Bourcet F. Thermally Activated Delayed Fluorescence in Polymers:A New Route Toward Highly Efficient Solution Processable OLEDs[J]. Adv Mater, 2015,27(44):7236-7240. doi: 10.1002/adma.201501090

    11. [11]

      Lee S Y, Yasuda T, Komiyama H. Thermally Activated Delayed Fluorescence Polymers for Efficient Solution-Processed Organic Light-Emitting Diodes[J]. Adv Mater, 2016,28(21):4019-4024. doi: 10.1002/adma.201505026

    12. [12]

      Hu Y, Cai W, Ying L. Novel Efficient Blue and Bluish-Green Light-Emitting Polymers with Delayed Fluorescence[J]. J Mater Chem C, 2018,6(11):2690-2695. doi: 10.1039/C7TC04064D

    13. [13]

      Kim H J, Lee C, Godumala M. Solution-processed Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes Using a New Polymeric Emitter Containing Non-Conjugated Cyclohexane Units[J]. Polym Chem, 2018,9(11):1318-1326. doi: 10.1039/C7PY02113E

    14. [14]

      Freeman D M E, Musser A J, Frost J M. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers:Reducing the Singlet-Triplet Energy Gap[J]. J Am Chem Soc, 2017,139(32):11073-11080. doi: 10.1021/jacs.7b03327

    15. [15]

      Luo J, Xie G, Gong S. Creating a Thermally Activated Delayed Fluorescence Channel in a Single Polymer System to Enhance Exciton Utilization Efficiency for Bluish-Green Electroluminescence[J]. Chem Commun, 2016,52(11):2292-2295. doi: 10.1039/C5CC09797E

    16. [16]

      Xie G, Luo J, Huang M. Inheriting the Characteristics of TADF Small Molecule by Side-Chain Engineering Strategy to Enable Bluish-Green Polymers with High PLQYs up to 74% and External Quantum Efficiency over 16% in Light-Emitting Diodes[J]. Adv Mater(Deerfield Beach, Fla.), 2017,29(11):1604223-1604229. doi: 10.1002/adma.201604223

    17. [17]

      Zhu Y, Zhang Y, Yao B. Synthesis and Electroluminescence of a Conjugated Polymer with Thermally Activated Delayed Fluorescence[J]. Macromolecules, 2016,49(11):4373-4377. doi: 10.1021/acs.macromol.6b00430

    18. [18]

      Yang Y, Wang S, Zhu Y. Thermally Activated Delayed Fluorescence Conjugated Polymers with Backbone-Donor/Pendant-Acceptor Architecture for Nondoped OLEDs with High External Quantum Efficiency and Low Roll-Off[J]. Adv Funct Mater, 2018,28(10):1706916-1706921. doi: 10.1002/adfm.v28.10

    19. [19]

      Wang Y, Zhu Y, Lin X. Efficient Non-Doped Yellow OLEDs Based on Thermally Activated Delayed Fluorescence Conjugated Polymers with an Acridine/Carbazole Donor Backbone and Triphenyltriazine Acceptor Pendant[J]. J Mater Chem C, 2018,6(3):568-574. doi: 10.1039/C7TC04994C

    20. [20]

      Wang Y, Zhu Y, Xie G. Bright White Electroluminescence from a Single Polymer Containing a Thermally Activated Delayed Fluorescence Unit and a Solution-Processed Orange OLED Approaching 20% External Quantum Efficiency[J]. J Mater Chem C, 2017,5(41):10715-10720. doi: 10.1039/C7TC03769D

    21. [21]

      Wei Q, Kleine P, Karpov Y. Conjugation-Induced Thermally Activated Delayed Fluorescence(TADF):From Conventional Non-TADF Units to TADF-Active Polymers[J]. Adv Funct Mater, 2017,27(7):1605051-1605061. doi: 10.1002/adfm.v27.7

    22. [22]

      Ren Z, Nobuyasu R S, Dias F B. Pendant Homopolymer and Copolymers as Solution-Processable Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes[J]. Macromolecules, 2016,49(15):5452-5460. doi: 10.1021/acs.macromol.6b01216

    23. [23]

      Nobuyasu R S, Ren Z, Griffiths G C. Rational Design of TADF Polymers Using a Donor-Acceptor Monomer with Enhanced TADF Efficiency Induced by the Energy Alignment of Charge Transfer and Local Triplet Excited States[J]. Adv Opt Mater, 2016,4(4):597-607. doi: 10.1002/adom.v4.4

    24. [24]

      Li C, Nobuyasu R S, Wang Y. Solution-Processable Thermally Activated Delayed Fluorescence White OLEDs Based on Dual-Emission Polymers with Tunable Emission Colors and Aggregation-Enhanced Emission Properties[J]. Adv Opt Mater, 2017,5(20)1700435. doi: 10.1002/adom.v5.20

    25. [25]

      Li C, Wang Y, Sun D. Thermally Activated Delayed Fluorescence Pendant Copolymers with Electron-and Hole-Transporting Spacers[J]. ACS Appl Mater Interfaces, 2018,10(6):5731-5739. doi: 10.1021/acsami.8b00136

    26. [26]

      Zeng X, Luo J, Zhou T. Using Ring-Opening Metathesis Polymerization of Norbornene to Construct Thermally Activated Delayed Fluorescence Polymers:High-Efficiency Blue Polymer Light-Emitting Diodes[J]. Macromolecules, 2018,51(5):1598-1604. doi: 10.1021/acs.macromol.7b02629

    27. [27]

      Shao S, Hu J, Wang X. Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect[J]. J Am Chem Soc, 2017,139(49):17739-17742. doi: 10.1021/jacs.7b10257

    28. [28]

      Albrecht K, Matsuoka K, Fujita K. Carbazole Dendrimers as Solution-Processable Thermally Activated Delayed-Fluorescence Materials[J]. Angew Chem Int Ed, 2015,54(19):5677-5682. doi: 10.1002/anie.201500203

    29. [29]

      Li Y, Xie G, Gong S. Dendronized Delayed Fluorescence Emitters for Non-Doped, Solution-Processed Organic Light-Emitting Diodes with High Efficiency and Low Efficiency Roll-Off Simultaneously:Two Parallel Emissive Channels[J]. Chem Sci, 2016,7(8):5441-5447. doi: 10.1039/C6SC00943C

    30. [30]

      Li Y, Chen T, Huang M. Tuning the Twist Angle of Thermally Activated Delayed Fluorescence Molecules via a Dendronization Strategy:High-Efficiency Solution-Processed Non-Doped OLEDs[J]. J Mater Chem C, 2017,5(14):3480-3487. doi: 10.1039/C7TC00119C

    31. [31]

      Wang J, Peng J, Yao W. Carbazole-dendrite-encapsulated Electron Acceptor Core for Constructing Thermally Activated Delayed Fluorescence Emitters Used in Nondoped Solution-Processed Organic Light-Emitting Diodes[J]. Org Electron, 2017,48:262-270. doi: 10.1016/j.orgel.2017.06.029

    32. [32]

      Liao X, Yang X, Zhang R. Solution-processed Small-Molecular White Organic Light-Emitting Diodes Based on a Thermally Activated Delayed Fluorescence Dendrimer[J]. J Mater Chem C, 2017,5(38):10001-10006. doi: 10.1039/C7TC03134C

    33. [33]

      Li J, Liao X, Xu H. Deep-blue Thermally Activated Delayed Fluorescence Dendrimers with Reduced Singlet-Triplet Energy Gap for Low Roll-Off Non-Doped Solution-Processed Organic Light-Emitting Diodes[J]. Dyes Pigm, 2017,140:79-86. doi: 10.1016/j.dyepig.2017.01.036

    34. [34]

      Huang M, Li Y, Wu K. Carbazole-dendronized Thermally Activated Delayed Fluorescent Molecules with Small Singlet-Triplet Gaps for Solution-Processed Organic Light-Emitting Diodes[J]. Dyes Pigm, 2018,153:92-98. doi: 10.1016/j.dyepig.2018.02.018

    35. [35]

      Sun K, Sun Y, Liu D. CBP Derivatives Dendronized Self-Host TADF Dendrimer:Achieving Efficient Non-Doped Near-Infrared Organic Light-Emitting Diodes[J]. Dyes Pigm, 2017,147:436-443. doi: 10.1016/j.dyepig.2017.08.045

    36. [36]

      Sun K, Chu D, Cui Y. Near-infrared Thermally Activated Delayed Fluorescent Dendrimers for the Efficient Non-Doped Solution-Processed Organic Light-Emitting Diodes[J]. Org Electron, 2017,48:389-396. doi: 10.1016/j.orgel.2017.06.034

    37. [37]

      Sun K, Sun Y, Huang T. Design Strategy of Yellow Thermally Activated Delayed Fluorescent Dendrimers and Their Highly Efficient Non-Doped Solution-Processed OLEDs with Low Driving Voltage[J]. Org Electron, 2017,42:123-130. doi: 10.1016/j.orgel.2016.12.026

    38. [38]

      Sun K, Sun Y, Tian W. Thermally Activated Delayed Fluorescence Dendrimers with Exciplex-Forming Dendrons for Low-Voltage-Driving and Power-Efficient Solution-Processed OLEDs[J]. J Mater Chem C, 2018,6(1):43-49. doi: 10.1039/C7TC04720G

    39. [39]

      Ban X, Zhu A, Zhang T. Highly Efficient All-Solution-Processed Fluorescent Organic Light-Emitting Diodes Based on a Novel Self-Host Thermally Activated Delayed Fluorescence Emitter[J]. ACS Appl Mater Interfaces, 2017,9(26):21900-21908. doi: 10.1021/acsami.7b04146

    40. [40]

      Ban X, Lin B, Jiang W. Constructing a Novel Dendron for a Self-Host Blue Emitter with Thermally Activated Delayed Fluorescence:Solution-Processed Nondoped Organic Light-Emitting Diodes with Bipolar Charge Transfer and Stable Color Purity[J]. Chem Asian J, 2017,12(2):216-223. doi: 10.1002/asia.v12.2

    41. [41]

      Ban X, Jiang W, Sun K. Self-Host Blue Dendrimer Comprised of Thermally Activated Delayed Fluorescence Core and Bipolar Dendrons for Efficient Solution-Processable Nondoped Electroluminescence[J]. ACS Appl Mater Interfaces, 2017,9(8):7339-7346. doi: 10.1021/acsami.6b14922

  • 加载中
    1. [1]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    2. [2]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    7. [7]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    8. [8]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    9. [9]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    12. [12]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    13. [13]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    14. [14]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    15. [15]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    16. [16]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    17. [17]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    18. [18]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

Metrics
  • PDF Downloads(43)
  • Abstract views(3446)
  • HTML views(1143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return