Citation: WU Cheng, XIAO Chunsheng, CHEN Xuesi. Application of Frustrated Lewis Pairs in Polymerization[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1013-1018. doi: 10.11944/j.issn.1000-0518.2018.09.180178 shu

Application of Frustrated Lewis Pairs in Polymerization

  • Corresponding author: XIAO Chunsheng, xiaocs@ciac.ac.cn CHEN Xuesi, xschen@ciac.ac.cn
  • Received Date: 15 May 2018
    Revised Date: 28 May 2018
    Accepted Date: 4 June 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.51773196, No.51573184, No.51520105004), the Chinese Academy of Sciences Youth Innovation Promotion Project(No.2017266)the National Natural Science Foundation of China 51773196the National Natural Science Foundation of China 51520105004the Chinese Academy of Sciences Youth Innovation Promotion Project 2017266the National Natural Science Foundation of China 51573184

Figures(8)

  • Frustrated Lewis pairs (FLPs) are combinations of bulky Lewis acids and bulky Lewis bases in solution that are deterred to from dative bonds by steric factors. In this particular combination, Lewis acids and Lewis bases failed to be neutralized and quenched, and remained reactive. When small molecules such as H2 are close to them, FLPs can split the chemical bonds of H2 to obtain a cation and an anion. This particular reaction activity shows promising applications of FLPs in catalytic hydrogenation, activation of small molecules, olefin polymerization, ring-opening polymerization and so on. Especially, in olefin polymerization and ring-opening polymerization, FLPs have a strong catalytic activity. In this article, we briefly introduce the development history of FLPs and the application of FLPs in activation of small molecules. In addition, the applications of FLPs in polymer fields are emphatically described.
  • 加载中
    1. [1]

      Stephan D W, Erker G. Frustrated Lewis Pairs:Metal-Free Hydrogen Activation and More[J]. Angew Chem Int Ed, 2010,49(1):46-76. doi: 10.1002/anie.200903708

    2. [2]

      Stephan D W, Erker G. Frustrated Lewis Pair Chemistry:Development and Perspectives[J]. Angew Chem Int Ed, 2015,54(22):6400-6441. doi: 10.1002/anie.201409800

    3. [3]

      Spies P, Erker G, Kehr G. Rapid Intramolecular Heterolytic Dihydrogen Activation by a Four-Membered Heterocyclic Phosphane-Borane Adduct[J]. Chem Commun, 2007,47(47):5072-5074.  

    4. [4]

      Stephan D W, Erker G. Frustrated Lewis Pairs:Metal-Free Hydrogen Activation and More[J]. Angew Chem Int Ed, 2010,49(1):46-76. doi: 10.1002/anie.200903708

    5. [5]

      Stephan D W, Erker G. Frustrated Lewis Pair Chemistry:Development and Perspectives[J]. Angew Chem Int Ed, 2015,54(22):6400-6441. doi: 10.1002/anie.201409800

    6. [6]

      Liu L, Cao L L, Shao Y. A Radical Mechanism for Frustrated Lewis Pair Reactivity[J]. Chemistry, 2017,3(2):259-267. doi: 10.1016/j.chempr.2017.05.022

    7. [7]

      XU Tieqi, LI Changhong. Application of Lewis Pairs in the Polymerization[J]. Chinese Prog Chem, 2015,27(8):1087-1092.  

    8. [8]

      XU Yingying, LI Zhao, Maxim Borzov. Application of Frustrated Lewis Pairs in the Activation of Small Molecules[J]. Chinese Prog Chem, 2012,24(8):1526-1532.  

    9. [9]

      YANG Hanyu, YANG Zhongtian, YU Zhidi. Research Progress on Frustrated Lewis Pairs Chemistry[J]. Chinese Univ Chem, 2016,31(4):1-11.  

    10. [10]

      Mccahill J S J, Welch G C, Stephan D W. Reactivity of "Frustrated Lewis Pairs":Three-Component Reactions of Phosphines, a Borane, and Olefins[J]. Angew Chem Int Ed, 2007,46(26):4968-4971. doi: 10.1002/(ISSN)1521-3773

    11. [11]

      PENG Bin, NIE Yong. Chinese Translation of "Frustratede Lewis Pair"[J]. China Terminol,, 2010,12(6):44-49. doi: 10.3969/j.issn.1673-8578.2010.06.015

    12. [12]

      Greb L, Ona-Burgos P, Schirmer B. Metal-Free Catalytic Olefin Hydrogenation:Low-Temperature H2 Activation by Frustrated Lewis Pairs[J]. Angew Chem Int Ed, 2012,51(40):10164-10168. doi: 10.1002/anie.201204007

    13. [13]

      LIU Yongbing, DU Haifeng. Frustrated Lewis Pair Catalyzed Asymmetric Hydrogenation[J]. Chinese Acta Chim Sin, 2014,72(7):771-777.  

    14. [14]

      Chernichenko K, Madarasz A, Papai I. A Frustrated-Lewis-Pair Approach to Catalytic Reduction of Alkynes to Cis-Alkenes[J]. Nat Chem, 2013,5(8):718-723. doi: 10.1038/nchem.1693

    15. [15]

      Momming C M, Otten E, Kehr G. Reversible Metal-Free Carbon Dioxide Binding by Frustrated Lewis Pairs[J]. Angew Chem Int Ed, 2009,48(36):6643-6646. doi: 10.1002/anie.v48:36

    16. [16]

      Otten E, Neu R C, Stephan D W. Complexation of Nitrous Oxide by Frustrated Lewis Pairs[J]. J Am Chem Soc, 2009,131(29):9918-9919. doi: 10.1021/ja904377v

    17. [17]

      Sajid M, Klose A, Birkmann B. Reactions of Phosphorus/Boron Frustrated Lewis Pairs with SO2[J]. Chem Sci, 2013,4(1):213-219. doi: 10.1039/C2SC21161K

    18. [18]

      Sajid M, Stute A, Cardenas A J P. N, N-Addition of Frustrated Lewis Pairs to Nitric Oxide:An Easy Entry to a Unique Family of Aminoxyl Radicals[J]. J Am Chem Soc, 2012,134(24):10156-10168. doi: 10.1021/ja302652a

    19. [19]

      Kreitner C, Geier S J, Stanlake L J E. Ring Openings of Lactone and Ring Contractions of Lactide by Frustrated Lewis Pairs[J]. Dalton Trans, 2011,40(25):6771-6777. doi: 10.1039/c1dt10449g

    20. [20]

      Birkmann B, Voss T, Geier S J. Frustrated Lewis Pairs and Ring-Opening of THF, Dioxane, and Thioxane[J]. Organometallics, 2010,29(21):5310-5319. doi: 10.1021/om1003896

    21. [21]

      Zhang Y, Miyake G M, Chen E Y. Alane-Based Classical and Frustrated Lewis Pairs in Polymer Synthesis:Rapid Polymerization of MMA and Naturally Renewable Methylene Butyrolactones into High-Molecular-Weight Polymers[J]. Angew Chem Int Ed, 2010,49(52):10158-10162. doi: 10.1002/anie.201005534

    22. [22]

      Chen E, He J, Zhang Y. Synthesis of Pyridine-and 2-Oxazoline-Functionalized Vinyl Polymers by Alane-Based Frustrated Lewis Pairs[J]. Synlett, 2014,25(11):1534-1538. doi: 10.1055/s-00000083

    23. [23]

      Xu T, Chen E Y X. Probing Site Cooperativity of Frustrated Phosphine/Borane Lewis Pairs by a Polymerization Study[J]. J Am Chem Soc, 2014,136(5):1774-1777. doi: 10.1021/ja412445n

    24. [24]

      Chen J, Chen E Y X. Lewis Pair Polymerization of Acrylic Monomers by N-Heterocyclic Carbenes and B(C6F5)3[J]. Isr J Chem, 2015,55(2):216-225. doi: 10.1002/ijch.v55.2

    25. [25]

      Holtrichter-Roessmann T, Isermann J, Roesener C. An Aluminum-Nitrogen Based Lewis Pair as an Effective Catalyst for the Oligomerization of Cyanamides:Formation of Acyclic C-N Oligomers Instead of Thermodynamically Favored Cyclic Aromatic Trimers[J]. Angew Chem Int Ed, 2013,52(28):7135-7138. doi: 10.1002/anie.201301970

    26. [26]

      Wang M, Nudelman F, Matthes R. Frustrated Lewis Pair Polymers as Responsive Self-Healing Gels[J]. J Am Chem Soc, 2017,139(40):14232-14236. doi: 10.1021/jacs.7b07725

    27. [27]

      Pang X, Duan R, Li X. Bimetallic Salen-Aluminum Complexes:Synthesis, Characterization and Their Reactivity with Rac-Lactide and ε-Caprolactone[J]. Polym Chem, 2014,5(12):3894-3900. doi: 10.1039/c3py01774e

    28. [28]

      Duan R, Gao B, Li X. Zinc Complexes Bearing Tridentate O, N, O-Type Half-Salen Ligands for Ring-Opening Polymerization of Lactide[J]. Polymer, 2015,71(5):1-7.  

    29. [29]

      Duan R, Hu C, Li X. Air-Stable Salen-Iron Complexes:Stereoselective Catalysts for Lactide and ε-Caprolactone Polymerization Through in Situ Initiation[J]. Macromolecules, 2017,50(23):9188-9195. doi: 10.1021/acs.macromol.7b01766

    30. [30]

      Piedra-Arroni E, Ladaviere C, Amgoune A. Ring-Opening Polymerization with Zn(C6F5)2-Based Lewis Pairs:Original and Efficient Approach to Cyclic Polyesters[J]. J Am Chem Soc, 2013,135(36):13306-13309. doi: 10.1021/ja4069968

    31. [31]

      Nakayama Y, Kosaka S, Yamaguchi K. Controlled Ring-Opening Polymerization of L-Lactide and Epsilon-Caprolactone Catalyzed by Aluminum-Based Lewis Pairs or Lewis Acid Alone[J]. J Polym Sci, Part A:Polym Chem, 2017,55(2):297-303. doi: 10.1002/pola.v55.2

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(16)
  • Abstract views(1360)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return