Surface-Enhanced Raman Spectroscopy: Applications and Perspectives
- Corresponding author: LI Jianfeng, Li@xmu.edu.cn TIAN Zhongqun, zqtian@xmu.edu.cn
Citation:
ZHU Yuezhou, ZHANG Yuejiao, LI Jianfeng, REN Bin, TIAN Zhongqun. Surface-Enhanced Raman Spectroscopy: Applications and Perspectives[J]. Chinese Journal of Applied Chemistry,
;2018, 35(9): 984-992.
doi:
10.11944/j.issn.1000-0518.2018.09.180172
Raman C V, Krishnan K S. A New Type of Secondary Radiation[J]. Nature, 1928,121:501-502.
Fleischmann M, Hendra P J, McQuillan A J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode[J]. Chem Phys Lett, 1974,26(2):163-166.
Jeanmaire D L, Van Duyne R P. Surface Raman Spectroelectrochemistry:Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode[J]. J Electroanal Chem Interfacial Electrochem, 1977,84(1):1-20. doi: 10.1016/S0022-0728(77)80224-6
Albrecht M G, Creighton J A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode[J]. J Am Chem Soc, 1977,99(15):5215-5217. doi: 10.1021/ja00457a071
Ding S Y, You E M, Tian Z Q. Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy[J]. Chem Soc Rev, 2017,46(13):4042-4076. doi: 10.1039/C7CS00238F
Bilmes S A, Rubim J C, Otto A. SERS from Pyridine Adsorbed on Electrodispersed Platinum Electrodes[J]. Chem Phys Lett, 1989,159(1):89-96.
Bryant M A, Joa S L, Pemberton J E. Raman Scattering from Monolayer Films of Thiophenol and 4-Mercaptopyridine at Platinum Surfaces[J]. Langmuir, 1992,8(3):753-756. doi: 10.1021/la00039a002
Maeda T, Sasaki Y, Horie C. Raman Study of Electrochemical Reactions of a Pt Electrode in H2SO4 Solution[J]. J Electron Spectrosc Relat Phenom, 1993,64(1):381-389.
Pettinger B, Tiedemann U. Surface Raman Spectroscopy at Pt Electrodes[J]. J Electroanal Chem Interfacial Electrochem, 1987,228(1):219-228.
Shannon C, Campion A. Unenhanced Raman Scattering as an in situ Probe of the Electrode-Electrolyte Interface:4-Cyanopyridine Adsorbed on a Rhodium Electrode[J]. J Phys Chem, 1988,92(6):1385-1387. doi: 10.1021/j100317a002
Yamada H, Yamamoto Y. Surface Enhanced Raman Scattering(SERS) of Chemisorbed Species on Various Kinds of Metals and Semiconductors[J]. Surf Sci, 1983,134(1):71-90. doi: 10.1016/0039-6028(83)90312-6
Tian Z Q, Ren B, Wu D Y. Surface-Enhanced Raman Scattering:From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures[J]. J Phys Chem B, 2002,106(37):9463-9483. doi: 10.1021/jp0257449
Cao P G, Yao J L, Ren B. Surface-Enhanced Raman Scattering from Bare Fe Electrode Surfaces[J]. Chem Phys Lett, 2000,316(1):1-5.
Gao J S, Tian Z Q. Surface Raman Spectroscopic Studies of Ruthenium, Rhodium and Palladium Electrodes Deposited on Glassy Carbon Substrates[J]. Spectrochim Acta, Part A, 1997,53(10):1595-1600. doi: 10.1016/S1386-1425(96)01855-0
Ren B, Lin X F, Yan J W. Electrochemically Roughened Rhodium Electrode as a Substrate for Surface-Enhanced Raman Spectroscopy[J]. J Phys Chem B, 2003,107(4):899-902. doi: 10.1021/jp026862z
Tian Z Q, Ren B, Mao B W. Extending Surface Raman Spectroscopy to Transition Metal Surfaces for Practical Applications.1.Vibrational Properties of Thiocyanate and Carbon Monoxide Adsorbed on Electrochemically Activated Platinum Surfaces[J]. J Phys Chem B, 1997,101(8):1338-1346. doi: 10.1021/jp962049q
Tian Z Q, Ren B. Adsorption and Reaction at Electrochemical Interfaces as Probed by Surface-Enhanced Raman Spectroscopy[J]. Annu Rev Phys Chem, 2004,55(1):197-229. doi: 10.1146/annurev.physchem.54.011002.103833
Yao J L, Tang J, Wu D Y. Surface Enhanced Raman Scattering from Transition Metal Nano-Wire Array and the Theoretical Consideration[J]. Surf Sci, 2002,514(1):108-116.
REN Bin, TIAN Zhongqun. The Progress in Surface-enhanced Raman Spectroscopy[J]. Mod Instrum Med Treat, 2004,10(5):1-8.
Kelly K L, Coronado E, Zhao L L. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment[J]. J Phys Chem B, 2003,107(3):668-677. doi: 10.1021/jp026731y
Tian Z Q, Yang Z L, Ren B. Surface-Enhanced Raman Scattering from Transition Metals with Special Surface Morphology and Nanoparticle Shape[J]. Faraday Discuss, 2006,132:159-170. doi: 10.1039/B507773G
McLellan J M, Xiong Y J, Hu M. Surface-Enhanced Raman Scattering of 4-Mercaptopyridine on Thin Films of Nanoscale Pd Cubes, Boxes, and Cages[J]. Chem Phys Lett, 2006,417(1):230-234.
Van Duyne R P, Haushalter J P. Surface-Enhanced Raman Spectroscopy of Adsorbates on Semiconductor Electrode Surfaces:Tris(Bipyridine) Ruthenium(Ⅱ) Adsorbed on Silver-Modified n-Gallium Arsenide(100)[J]. J Phys Chem, 1983,87(16):2999-3003. doi: 10.1021/j100239a004
Van Duyne R P, Haushalter J P, Janik-Czachor M. Surface-Enhanced Resonance Raman Spectroscopy of Adsorbates on Semiconductor Electrode Surfaces.2.In Situ Studies of Transition Metal(Iron and Ruthenium) Complexes on Silver/Gallium Arsenide and Silver/Silicon[J]. J Phys Chem, 1985,89(19):4055-4061. doi: 10.1021/j100265a026
Fleischmann M, Tian Z Q, Li L J. Raman Spectroscopy of Adsorbates on Thin Film Electrodes Deposited on Silver Substrates[J]. J Electroanal Chem Interfacial Electrochem, 1987,217(2):397-410. doi: 10.1016/0022-0728(87)80231-0
Leung L W H, Weaver M J. Extending Surface-Enhanced Raman Spectroscopy to Transition-Metal Surfaces:Carbon Monoxide Adsorption and Electrooxidation on Platinum-and Palladium-Coated Gold Electrodes[J]. J Am Chem Soc, 1987,109(17):5113-5119. doi: 10.1021/ja00251a011
Leung L W H, Weaver M J. Adsorption and Electrooxidation of Carbon Monoxide on Rhodium-and Ruthenium-Coated Gold Electrodes as Probed by Surface-Enhanced Raman Spectroscopy[J]. Langmuir, 1988,4(5):1076-1083. doi: 10.1021/la00083a002
Leung L W H, Weaver M J. Extending the Metal Interface Generality of Surface-Enhanced Raman Spectroscopy:Underpotential Deposited Layers of Mercury, Thallium, and Lead on Gold Electrodes[J]. J Electroanal Chem Interfacial Electrochem, 1987,217(2):367-384. doi: 10.1016/0022-0728(87)80229-2
Mengoli G, Musiani M M, Fleischman M. Enhanced Raman Scattering from Iron Electrodes[J]. Electrochim Acta, 1987,32(8):1239-1245. doi: 10.1016/0013-4686(87)80042-7
Park S, Yang P, Corredor P. Transition Metal-Coated Nanoparticle Films:Vibrational Characterization with Surface-Enhanced Raman Scattering[J]. J Am Chem Soc, 2002,124(11):2428-2429. doi: 10.1021/ja017406b
Hu J W, Zhang Y, Li J F. Synthesis of Au@Pd Core-Shell Nanoparticles with Controllable Size and Their Application in Surface-Enhanced Raman Spectroscopy[J]. Chem Phys Lett, 2005,408(4):354-359.
Lu L H, Sun G Y, Zhang H J. Fabrication of Core-Shell Au-Pt Nanoparticle Film and Its Potential Application as Catalysis and SERS Substrate[J]. J Mater Chem, 2004,14(6):1005-1009. doi: 10.1039/b314868h
Tian Z Q, Ren B, Li J F. Expanding Generality of Surface-Enhanced Raman Spectroscopy with Borrowing SERS Activity Strategy[J]. Chem Commun, 2007,34(34):3514-3534.
Wessel J. Surface-Enhanced Optical Microscopy[J]. J Opt Soc Am B, 1985,2(9):1538-1541. doi: 10.1364/JOSAB.2.001538
Anderson M S. Locally Enhanced Raman Spectroscopy with an Atomic Force Microscope[J]. Appl Phys Lett, 2000,76(21):3130-3132. doi: 10.1063/1.126546
Hayazawa N, Inouye Y, Sekkat Z. Metallized Tip Amplification of Near-Field Raman Scattering[J]. Opt Commun, 2000,183(1):333-336.
Pettinger B, Picardi G, Schuster R. Surface Enhanced Raman Spectroscopy:Towards Single Molecular Spectroscopy[J]. Electrochemistry, 2000,68(12):942-949.
St ckle R M, Suh Y D, Deckert V. Nanoscale Chemical Analysis by Tip-Enhanced Raman Spectroscopy[J]. Chem Phys Lett, 2000,318(1):131-136.
Li J F, Huang Y F, Ding Y. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy[J]. Nature, 2010,464:392-395. doi: 10.1038/nature08907
Li J F, Zhang Y J, Ding S Y. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy[J]. Chem Rev, 2017,117(7):5002-5069. doi: 10.1021/acs.chemrev.6b00596
REN Bin, WANG Xi. Tip-enhanced Raman Spectroscopy-Technique, Applications and Perspectives[J]. Chinese J Light Scatt, 2006,18(4):288-296. doi: 10.3969/j.issn.1004-5929.2006.04.001
Zhang R, Zhang Y, Dong Z C. Chemical Mapping of a Single Molecule by Plasmon-Enhanced Raman Scattering[J]. Nature, 2013,498:82-86. doi: 10.1038/nature12151
Jiang S, Zhang Y, Zhang R. Distinguishing Adjacent Molecules on a Surface Using Plasmon-Enhanced Raman Scattering[J]. Nat Nanotechnol, 2015,10:865-869. doi: 10.1038/nnano.2015.170
Zhong J H, Jin X, Meng L Y. Probing the Electronic and Catalytic Properties of a Bimetallic Surface with 3 nm Resolution[J]. Nat Nanotechnol, 2016,12:132-136. doi: 10.1038/nnano.2016.241
Zeng Z C, Huang S C, Wu D Y. Electrochemical Tip-Enhanced Raman Spectroscopy[J]. J Am Chem Soc, 2015,137(37):11928-11931. doi: 10.1021/jacs.5b08143
Li C Y, Dong J C, Jin X. In Situ Monitoring of Electrooxidation Processes at Gold Single Crystal Surfaces Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy[J]. J Am Chem Soc, 2015,137(24):7648-7651. doi: 10.1021/jacs.5b04670
Zhang H, Wang C, Sun H L. In Situ Dynamic Tracking of Heterogeneous Nanocatalytic Processes by Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy[J]. Nat Commun, 2017,815447. doi: 10.1038/ncomms15447
Zhang H, Zhang X G, Wei J. Revealing the Role of Interfacial Properties on Catalytic Behaviors by in situ Surface-Enhanced Raman Spectroscopy[J]. J Am Chem Soc, 2017,139(30):10339-10346. doi: 10.1021/jacs.7b04011
Li J F, Anema J R, Wandlowski T. Dielectric Shell Isolated and Graphene Shell Isolated Nanoparticle Enhanced Raman Spectroscopies and Their Applications[J]. Chem Soc Rev, 2015,44(23):8399-8409. doi: 10.1039/C5CS00501A
Ding S Y, Yi J, Li J F. Nanostructure-Based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials[J]. Nat Rev Mater, 2016,116021. doi: 10.1038/natrevmats.2016.21
Liu Y, Hu Y, Zhang J. Few-Layer Graphene-Encapsulated Metal Nanoparticles for Surface-Enhanced Raman Spectroscopy[J]. J Phys Chem C, 2014,118(17):8993-8998. doi: 10.1021/jp500751a
Huang Y P, Huang S C, Wang X J, et al. Shell-Isolated Tip-Enhanced Raman and Fluorescence Spectroscopy[J]. Angew Chem Int Ed, DOI: 10.1002/anie.201802892.
Xu J, Zhang Y J, Yin H. Shell-Isolated Nanoparticle-Enhanced Raman and Fluorescence Spectroscopies:Synthesis and Applications[J]. Adv Opt Mater, 2018,61701069. doi: 10.1002/adom.v6.4
Aroca R F, Ross D J, Domingo C. Surface-Enhanced Infrared Spectroscopy[J]. Appl Spectrosc, 2004,58(11):324A-338A. doi: 10.1366/0003702042475420
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
(A)Rough silver electrode[2]; (B)Silver nanoislands deposited on n-GaAs electrode[23-24]; (C)Transition metals deposited on gold surface; (D)Tip-enhanced Raman spectroscopy(TERS)[34-38]; (E)Au@Transition metal core-shell nanoparticles[31-33]; (F)Shell-isolated nanoparticle-enhanced Raman spectroscopy(SHINERS)[39]
Contact mode:(A)Probe molecules absorbed on the bare gold nanoparticles; (B)Probe molecules absorbed on the Au@Transition Metal core-shell nanoparticles; (C)Non-contact mode:Tip-enhanced Raman spectroscopy(TERS); (D)Shell-isolated mode:Shell-isolated nanoparticle-enhanced Raman spectroscopy(SHINERS)
(A)STM-TERS[42]; (B)Probing the properties of bimetallic surface with 3 nm spacial resolution[44]; (C)Electrochemical-TERS(EC-TERS)[45]
(A)Electrochemical reaction process at gold single-crystal electrode surfaces[46]; (B)Application of SHINERS-satellite structure in catalytic process[47-48]; (C)Detect pesticide residues on fruits or vegetables by SHINERS[49]