Citation: LIU Taihong, FANG Yu. Film-based Fluorescent Gas Sensors[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1133-1137. doi: 10.11944/j.issn.1000-0518.2018.09.180171 shu

Film-based Fluorescent Gas Sensors

  • Corresponding author: FANG Yu, yfang@snnu.edu.cn
  • Received Date: 14 May 2018
    Revised Date: 15 May 2018
    Accepted Date: 22 May 2018

    Fund Project: Program of the 111 Project B14041Supported by the National Natural Science Foundation of China(No.21527802, No.21673133), Program of the 111 Project(No.B14041), the Program of Changjiang Scholars and Innovative Research Team in University(No.IRT-14R33), the Fundamental Research Funds for the Central Universities(No.GK201803024)the National Natural Science Foundation of China 21527802the National Natural Science Foundation of China 21673133the Program of Changjiang Scholars and Innovative Research Team in University IRT-14R33the Fundamental Research Funds for the Central Universities GK201803024

Figures(1)

  • Fluorescent film sensors have gained extensive attention in the past few decades because of their notable advantages such as high sensitivity, real-time detection, abundant fluorescence signals, easier device implementation, etc. With the fast development and promotion of microfabrication technology, integrated manufacturing, flexible device and Internet of Things, film-based fluorescent sensors have become one of the hot points of sensor studies. Based on the recent progress in our research, this article briefly reviews the development and applications of low-molecular mass compounds-based fluorescent film sensors, of which the applications in the vapor phase detection of explosives, illicit drugs, volatile organic contaminates and some signal molecules of diseases are specially addressed. In addition, problems and challenges limiting the construction of the film sensors are pointed out, and the futures of the relevant studies are prospected.
  • 加载中
    1. [1]

      Chen D, Pei Q. Electronic Muscles and Skins:A Review of Soft Sensors and Actuators[J]. Chem Rev, 2017,117:11239-11268. doi: 10.1021/acs.chemrev.7b00019

    2. [2]

      Liu Y, He K, Chen G. Nature-Inspired Structural Materials for Flexible Electronic Devices[J]. Chem Rev, 2017,117:12893-12941. doi: 10.1021/acs.chemrev.7b00291

    3. [3]

      Lustig W P, Mukherjee S, Rudd N D. Metal-Organic Frameworks:Functional Luminescent and Photonic Materials for Sensing Applications[J]. Chem Soc Rev, 2017,46:3242-3285. doi: 10.1039/C6CS00930A

    4. [4]

      Wu D, Sedgwick A C, Gunnlaugsson T. Fluorescent Chemosensors:The Past, Present and Future[J]. Chem Soc Rev, 2017,46:7105-7123. doi: 10.1039/C7CS00240H

    5. [5]

      Jung H S, Verwilst P, Kim W Y. Fluorescent and Colorimetric Sensors for the Detection of Humidity or Water Content[J]. Chem Soc Rev, 2016,45:1242-1256. doi: 10.1039/C5CS00494B

    6. [6]

      Mei J, Hong M Y, Lam J W Y. Aggregation-Induced Emission:The Whole is More Brilliant than the Parts[J]. Adv Mater, 2014,26(31):5429-5479. doi: 10.1002/adma.201401356

    7. [7]

      MIAO Rong, FANG Yu. Extended Research on Molecular Gels:From the Perspective of Development of Three Dimensional Fluorescent Sensing Films and Low-density Porous Materials[J]. Chinese Sci Bull, 2017,62(6):532-545.  

    8. [8]

      Miao R, Peng J X, Fang Y. Recent Advances in Fluorescent Film Sensing from the Perspective of Both Molecular Design and Film Engineering[J]. Mol Syst Des Eng, 2016,1(3):242-257. doi: 10.1039/C6ME00039H

    9. [9]

      Liu K, Shang C D, Wang Z L. Non-contact Identification and Differentiation of Illicit Drugs Using Fluorescent Films[J]. Nat Commun, 2018,91695(1-11).  

    10. [10]

      Shang C D, Wang G, He M X. A High Performance Fluorescent Arylamine Sensor Toward Lung Cancer Sniffing[J]. Sens Actuators B, 2017,241:1316-1323. doi: 10.1016/j.snb.2016.09.187

    11. [11]

      Drazin J W, Castro R H R. Water Adsorption Microcalorimetry Model:Deciphering Surface Energies and Water Chemical Potentials of Nanocrystalline Oxides[J]. J Phys Chem C, 2014,118:10131-10142. doi: 10.1021/jp5016356

    12. [12]

      Qi Y Y, Xu W J, Kang R. Discrimination of Saturated Alkanes and Relevant Volatile Compounds via the Utilization of a Conceptual Fluorescent Sensor Array Based on Organoboron-Containing Polymers[J]. Chem Sci, 2018,9:1892-1901. doi: 10.1039/C7SC05243J

    13. [13]

      Yoon B, Liu S F, Swager T M. Surface-Anchored Poly(4-vinylpyridine)-Single-Walled Carbon Nanotube-Metal Composites for Gas Detection[J]. Chem Mater, 2016,28:5916-5924. doi: 10.1021/acs.chemmater.6b02453

    14. [14]

      Jang H S, Cho H S, Uhrig D. Insight into the Interactions Between Pyrene and Polystyrene for Efficient Quenching Nitroaromatic Explosives[J]. J Mater Chem C, 2017,5:12466-12473. doi: 10.1039/C7TC04288D

    15. [15]

      Chen S, Slattum P, Wang C. Self-Assembly of Perylene Imide Molecules into 1D Nanostructures:Methods, Morphologies, and Applications[J]. Chem Rev, 2015,115(21):11967-11998. doi: 10.1021/acs.chemrev.5b00312

    16. [16]

      Shaw P E, Burn P L. Real-time Fluorescence Quenching-based Detection of Nitro-containing Explosive Vapours:What Are the Key Processes?[J]. Phys Chem Chem Phys, 2017,19:29714-29730. doi: 10.1039/C7CP04602B

    17. [17]

      Airoudj A, Debarnot D, Bêche B. Design and Sensing Properties of an Integrated Optical Gas Sensor Based on a Multilayer Structure[J]. Anal Chem, 2008,80(23):9188-9194. doi: 10.1021/ac801320g

    18. [18]

      Mirzaei A, Kim J H, Kim H W. Resistive-based Gas Sensors for Detection of Benzene, Toluene and Zylene(BTX) Gases:A Review[J]. J Mater Chem C, 2018,6:4342-4370. doi: 10.1039/C8TC00245B

    19. [19]

      Liu T, Ding L, Zhao K. Single-layer Assembly of Pyrene End-capped Terthiophene and Its Sensing Performances to Nitroaromatic Explosives[J]. J Mater Chem, 2012,22:1069-1077. doi: 10.1039/C1JM14022A

    20. [20]

      LIU Liping, YE Shanghui, HUANG Wei. Advances on Fluorescent Sensors for Detection of Explosives[J]. Chinese J Appl Chem, 2017,34(1):1-24.  

    21. [21]

      Sun X, Wang Y, Lei Y. Fluorescence Based Explosive Detection:From Mechanisms to Sensory Materials[J]. Chem Soc Rev, 2015,44:8019-8061. doi: 10.1039/C5CS00496A

    22. [22]

      Geng Y, Ali M A, Clulow A J. Unambiguous Detection of Nitrated Explosive Vapours by Fluorescence Quenching of Dendrimer Films[J]. Nat Commun, 2015,68240(1-8).  

    23. [23]

      Ali M A, Chen S S Y, Cavaye H. Diffusion of Nitroaromatic Vapours into Fluorescent Dendrimer Films for Explosives Detection[J]. Sens Actuators B, 2015,210:550-557. doi: 10.1016/j.snb.2014.12.084

    24. [24]

      He M X, Peng H N, Wang G. Fabrication of a New Fluorescent Film and Its Superior Sensing Performance to N-Methamphetamine in Vapor Phase[J]. Sens Actuators B, 2016,227:255-262. doi: 10.1016/j.snb.2015.12.048

    25. [25]

      Sun Q Q, Lv Y C, Liu L L. Experimental Studies on a New Fluorescent Ensemble of Calix[4] pyrrole and Its Sensing Performance in the Film State[J]. ACS Appl Mater Interfaces, 2016,8(42):29128-29135. doi: 10.1021/acsami.6b08642

    26. [26]

      Hakim M, Broza Y Y, Barash O. Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways[J]. Chem Rev, 2012,112:5949-5966. doi: 10.1021/cr300174a

    27. [27]

      Moon H G, Jung Y, Han S D. Chemiresistive Electronic Nose Toward Detection of Biomarkers in Exhaled Breath[J]. ACS Appl Mater Interfaces, 2016,8:20969-20976. doi: 10.1021/acsami.6b03256

    28. [28]

      Fan J X, Chang X M, He M X. Functionality-Oriented Derivatization of Naphthalene Diimide:A Molecular Gel Strategy-Based Fluorescent Film for Aniline Vapor Detection[J]. ACS Appl Mater Interfaces, 2016,8(28):18584-18592. doi: 10.1021/acsami.6b04915

  • 加载中
    1. [1]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    2. [2]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(2)
  • Abstract views(413)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return