Electrochemiluminescent Biosensing and Its Application in Rapid Detection of Acute Myocardial Infarction Markers
- Corresponding author: SHAO Yuanhua, yhshao@pku.edu.cn
Citation:
QIN Xiaoli, WANG Minghan, DONG Yifan, SHAO Yuanhua. Electrochemiluminescent Biosensing and Its Application in Rapid Detection of Acute Myocardial Infarction Markers[J]. Chinese Journal of Applied Chemistry,
;2018, 35(9): 1107-1112.
doi:
10.11944/j.issn.1000-0518.2018.09.180170
World Health Statistics 2017: Monitoring health for the SDGs, Sustainable Development Goals[R]. Geneva: WHO 2017.
Han X, Li S, Peng Z. Recent Development of Cardiac Troponin I Detection[J]. ACS Sens, 2016,1(2):106-114. doi: 10.1021/acssensors.5b00318
Arya S K, Bhansali S. Lung Cancer and Its Early Detection Using Biomarker-Based Biosensors[J]. Chem Rev, 2011,111(11):6783-6809. doi: 10.1021/cr100420s
Kemp M, Donovan J, Higham H. Biochemical Markers of Myocardial Injury[J]. Br J Anaesth, 2004,93(1):63-73. doi: 10.1093/bja/aeh148
Pokhrel S, Guotian Y. Microrna and Its Role in Cardiovascular Disease[J]. World J Cardiovasc Dis, 2017,7(10):340-357. doi: 10.4236/wjcd.2017.710032
Arya S K, Bhansali S. Lung Cancer and Its Early Detection Using Biomarker-Based Biosensors[J]. Chem Rev, 2011,111(11):6783-6809. doi: 10.1021/cr100420s
Turner A P F. Biosensors:Sense and Sensibility[J]. Chem Soc Rev, 2013,42(8)3184. doi: 10.1039/c3cs35528d
Liu Z, Qi W, Xu G. Recent Advances in Electrochemiluminescence[J]. Chem Soc Rev, 2015,44:3117-3142. doi: 10.1039/C5CS00086F
Miao W. Electrogenerated Chemiluminescence and Its Biorelated Applications[J]. Chem Rev, 2008,108:2506-2553. doi: 10.1021/cr068083a
Harvey N. Luminescence During Electrolysis[J]. J Phys Chem, 1928,33(10):1456-1459.
Miao W, Choi J P, Bard A J. Electrogenerated Chemiluminescence:The Tris(2, 2'-Bipyridine) Ruthenium(Ⅱ), (Ru(bpy)32+)/Tri-N-Propylamine(TPrA) System Revisited-A New Route Involving TPrA·+ Cation Radicals[J]. J Am Chem Soc, 2002,124:14478-14485. doi: 10.1021/ja027532v
Rubinstein I, Bard A J. Electrogenerated Chemiluminescence:Aqueous ECL Systems Based on Tris(2, 2'-Bipyridine)Ruthenium2+ and Oxalate or Organic Acids[J]. J Am Chem Soc, 1981,103(3):512-516. doi: 10.1021/ja00393a006
Dick J E, Renault C, Kim B K. Electrogenerated Chemiluminescence of Common Organic Luminophores in Water Using an Emulsion System[J]. J Am Chem Soc, 2014,136(39):13546-13549. doi: 10.1021/ja507198r
Dick J E, Renault C, Kim B K. Simultaneous Detection of Single Attoliter Droplet Collisions by Electrochemical and Electrogenerated Chemiluminescent Responses[J]. Angew Chem Int Ed, 2014,53(44):11859-11862. doi: 10.1002/anie.201407937
Xu S, Liu Y, Wang T. Positive Potential Operation of a Cathodic Electrogenerated Chemiluminescence Immunosensor Based on Luminol and Graphene for Cancer Biomarker Detection[J]. Anal Chem, 2011,83(10):3817-3823.
Niu H, Yuan R, Chai Y. Highly Enhanced Electrochemiluminescence Based on Synergetic Catalysis Effect of Enzyme and Pd Nanoparticles for Ultrasensitive Immunoassay[J]. Chem Commun, 2011,47(29)8397. doi: 10.1039/c1cc12179k
Dong Y, Tian W, Ren S. Graphene Quantum Dots/L-Cysteine Coreactant Electrochemiluminescence System and Its Application in Sensing Lead(Ⅱ) Ions[J]. ACS Appl Mater Interfaces, 2014,6:646-1651.
Jiang D, Du X, Liu Q. One-Step Thermal-Treatment Route to Fabricate Well-Dispersed ZnO Nanocrystals on Nitrogen-Doped Graphene for Enhanced Electrochemiluminescence and Ultrasensitive Detection of Pentachlorophenol[J]. ACS Appl Mater Interfaces, 2015,7(5):3093-3100. doi: 10.1021/am507163z
Wang C, Qian J, Wang K. Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels[J]. ACS Appl Mater Interfaces, 2015,7:26865-26873.
Li L, Chen Y, Zhu J J. Recent Advances in Electrochemiluminescence Analysis[J]. Anal Chem, 2017,89(1):358-371. doi: 10.1021/acs.analchem.6b04675
Qi H, Chen Y H, Cheng C H. Electrochemistry and Electrogenerated Chemiluminescence of Three Phenanthrene Derivatives, Enhancement of Radical Stability, and Electrogenerated Chemiluminescence Efficiency by Substituent Groups[J]. J Am Chem Soc, 2013,135(24):9041-9049. doi: 10.1021/ja403166s
Pinaud F, Russo L, Pinet S. Enhanced Electrogenerated Chemiluminescence in Thermoresponsive Microgels[J]. J Am Chem Soc, 2013,135(15):5517-5520. doi: 10.1021/ja401011j
Li F, Yu Y, Cui H. Label-Free Electrochemiluminescence Immunosensor for Cardiac Troponin I Using Luminol Functionalized Gold Nanoparticles as a Sensing Platform[J]. Analyst, 2013,138(6):1844-1850. doi: 10.1039/c3an36805j
Zhang H, Han Z, Wang X. Sensitive Immunosensor for N-Terminal Pro-brain Natriuretic Peptide Based on N-(Aminobutyl)-N-(Ethylisoluminol)-Functionalized Gold Nanodots/Multiwalled Carbon Nanotube Electrochemiluminescence Nanointerface[J]. ACS Appl Mater Interfaces, 2015,7(14):7599-7604. doi: 10.1021/am509094p
Tokel N E, Bard A J. Electrogenerated Chemiluminescence Electrochemistry and Emission from Systems Containing Tris(2, 2'-Bipyridine)Ruthenium(Ⅱ) Dichloride[J]. J Am Chem Soc, 1972,94(8):2862-2863. doi: 10.1021/ja00763a056
Qiu R, Zhang X, Luo H. Mass Spectrometric Snapshots for Electrochemical Reactions[J]. Chem Sci, 2016,7(11):6684-6688. doi: 10.1039/C6SC01978A
Qi H, Qiu X, Xie D. Ultrasensitive Electrogenerated Chemiluminescence Peptide-Based Method for the Determination of Cardiac Troponin I Incorporating Amplification of Signal Reagent-Encapsulated Liposomes[J]. Anal Chem, 2013,85(8):3886-3894. doi: 10.1021/ac4005259
Dong M, Li M, Qi H. Electrogenerated Chemiluminescence Peptide-Based Biosensing Method for Cardiac Troponin I Using Peptide-Integrating Ru(bpy)32+-Functionalized Gold Nanoparticles as Nanoprobe[J]. Gold Bull, 2015,48:21-29. doi: 10.1007/s13404-015-0156-2
Nasiri Khonsari Y, Sun S. Recent Trends in Electrochemiluminescence Aptasensors and Their Applications[J]. Chem Commun, 2017,53(65):9042-9054.
Shi L, Li X, Zhu W. Sandwich-Type Electrochemiluminescence Sensor for Detection of NT-ProBNP by Using High Efficiency Quench Strategy of Fe3O4@PDA Toward Ru(bpy)32+ Coordinated with Silver Oxalate[J]. ACS Sens, 2017,2(12):1774-1778. doi: 10.1021/acssensors.7b00809
Pur M R K, Hosseini M, Faridbod F. Highly Sensitive Label-Free Electrochemiluminescence Aptasensor for Early Detection of Myoglobin, a Biomarker for Myocardial Infarction[J]. Electrochim Acta, 2017,184(9):3529-3537.
O'Reilly E J, Conroy P J, Hearty S. Electrochemiluminescence Platform for the Detection of C-Reactive Proteins:Application of Recombinant Antibody Technology to Cardiac Biomarker Detection[J]. RSC Adv, 2015,5(83):67874-67877. doi: 10.1039/C5RA08450D
Irkham , Watanabe T, Fiorani A. Co-Reactant-on-Demand ECL:Electrogenerated Chemiluminescence by the in Situ Production of S2O82- at Boron-Doped Diamond Electrodes[J]. J Am Chem Soc, 2016,138(48):15636-15641. doi: 10.1021/jacs.6b09020
Long Y M, Bao L, Zhao J Y. Revealing Carbon Nanodots as Coreactants of the Anodic Electrochemiluminescence of Ru(bpy)32+[J]. Anal Chem, 2014,86(15):7224-7228. doi: 10.1021/ac502405p
Venkateswara Raju C, Senthil Kumar S. Highly Sensitive Novel Cathodic Electrochemiluminescence of Tris(2, 2'-Bipyridine) Ruthenium(Ⅱ) Using Glutathione as a Co-reactant[J]. Chem Commun, 2017,53(49):6593-6596. doi: 10.1039/C7CC03349D
Qin X, Gu C, Wang M. Triethanolamine-Modified Gold Nanoparticles Synthesized by a One-Pot Method and Their Application in Electrochemiluminescent Immunoassy[J]. Anal Chem, 2018,90(4):2826-2832. doi: 10.1021/acs.analchem.7b04952
Wu P, Hou X, Xu J J. Ratiometric Fluorescence, Electrochemiluminescence, and Photoelectrochemical Chemo/Biosensing Based on Semiconductor Quantum Dots[J]. Nanoscale, 2016,8(16):8427-8442. doi: 10.1039/C6NR01912A
Yang X, Yu Y Q, Peng L Z. Strong Electrochemiluminescence from MOF Accelerator Enriched Quantum Dots for Enhanced Sensing of Trace cTnI[J]. Anal Chem, 2018,90(6):3995-4002. doi: 10.1021/acs.analchem.7b05137
Zheng H, Zhang Q, Hong Z. A Bifunctional Catalyst Based ECL Immunosensor for a Cardiac Biomarker Regulated by Oxygen Evolution Reaction[J]. Electrochim Acta, 2016,215:326-333. doi: 10.1016/j.electacta.2016.08.120
Bist I, Song B, Mosa I M. Electrochemiluminescent Array to Detect Oxidative Damage in ds-DNA Using[Os(bpy)2(Phen-Benz-COOH)]2+/Nafion/Graphene Films[J]. ACS Sens, 2016,1(3):272-278. doi: 10.1021/acssensors.5b00189
Qi W, Lai J, Gao W. Wireless Electrochemiluminescence with Disposable Minidevice[J]. Anal Chem, 2014,86(18):8927-8931.
Zhang H R, Wang Y Z, Zhao W. Visual Color-Switch Electrochemiluminescence Biosensing of Cancer Cell Based on Multichannel Bipolar Electrode Chip[J]. Anal Chem, 2016,88(5):2884-2890. doi: 10.1021/acs.analchem.5b04716
Yang X, Zhao Y, Sun L. Electrogenerated Chemiluminescence Biosensor Array for the Detection of Multiple Ami Biomarkers[J]. Sens Actuators B, 2018,257:60-67. doi: 10.1016/j.snb.2017.10.108
Liang W, Fan C, Zhuo Y. Multiparameter Analysis-Based Electrochemiluminescent Assay for Simultaneous Detection of Multiple Biomarker Proteins on a Single Interface[J]. Anal Chem, 2016,88(9):4940-4948. doi: 10.1021/acs.analchem.6b00878
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
Borong Yu , Huijiao Zhang , Xinyu Zhang , Xiaoying Li , Shuming Chen , Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Renxiu Zhang , Xin Zhao , Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116