Citation: QIN Xiaoli, WANG Minghan, DONG Yifan, SHAO Yuanhua. Electrochemiluminescent Biosensing and Its Application in Rapid Detection of Acute Myocardial Infarction Markers[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1107-1112. doi: 10.11944/j.issn.1000-0518.2018.09.180170 shu

Electrochemiluminescent Biosensing and Its Application in Rapid Detection of Acute Myocardial Infarction Markers

  • Corresponding author: SHAO Yuanhua, yhshao@pku.edu.cn
  • Received Date: 14 May 2018
    Revised Date: 15 May 2018
    Accepted Date: 22 May 2018

    Fund Project: National Natural Science Foundation of China 21335001National Natural Science Foundation of China 21575006National Key Research and Development Program of China 2016YFA0201300China Postdoctoral Science Foundation 2016M600846Supported by National Key Research and Development Program of China(No.2016YFA0201300), National Natural Science Foundation of China(No.21335001, No.21575006), China Postdoctoral Science Foundation(No.2016M600846)

  • Design and development of simple, ultrasensitive, and high selective analytical techniques and methods for the clinical diagnosis and monitoring of a series of acute myocardial infarction (AMI) markers are urgently required for complicated sample matrix. Due to its good stability, high sensitivity, wide linear range, and good controllability, electrochemiluminescent (ECL) analysis technique is commonly used for low-level analytes. Combined with biosensing, it shows great promise in assaying low-level AMI biomarkers in complicated matrix such as biological fluids. This review presents the development of ECL sensing technique for AMI bioanalysis in recent five years. Some ECL probes, co-reactants, multianalyte biosensing methods and their application in AMI marker analysis have been introduced.
  • 加载中
    1. [1]

      World Health Statistics 2017: Monitoring health for the SDGs, Sustainable Development Goals[R]. Geneva: WHO 2017. 

    2. [2]

      Han X, Li S, Peng Z. Recent Development of Cardiac Troponin I Detection[J]. ACS Sens, 2016,1(2):106-114. doi: 10.1021/acssensors.5b00318

    3. [3]

      Arya S K, Bhansali S. Lung Cancer and Its Early Detection Using Biomarker-Based Biosensors[J]. Chem Rev, 2011,111(11):6783-6809. doi: 10.1021/cr100420s

    4. [4]

      Kemp M, Donovan J, Higham H. Biochemical Markers of Myocardial Injury[J]. Br J Anaesth, 2004,93(1):63-73. doi: 10.1093/bja/aeh148

    5. [5]

      Pokhrel S, Guotian Y. Microrna and Its Role in Cardiovascular Disease[J]. World J Cardiovasc Dis, 2017,7(10):340-357. doi: 10.4236/wjcd.2017.710032

    6. [6]

      Arya S K, Bhansali S. Lung Cancer and Its Early Detection Using Biomarker-Based Biosensors[J]. Chem Rev, 2011,111(11):6783-6809. doi: 10.1021/cr100420s

    7. [7]

      Turner A P F. Biosensors:Sense and Sensibility[J]. Chem Soc Rev, 2013,42(8)3184. doi: 10.1039/c3cs35528d

    8. [8]

      Liu Z, Qi W, Xu G. Recent Advances in Electrochemiluminescence[J]. Chem Soc Rev, 2015,44:3117-3142. doi: 10.1039/C5CS00086F

    9. [9]

      Miao W. Electrogenerated Chemiluminescence and Its Biorelated Applications[J]. Chem Rev, 2008,108:2506-2553. doi: 10.1021/cr068083a

    10. [10]

      Harvey N. Luminescence During Electrolysis[J]. J Phys Chem, 1928,33(10):1456-1459.  

    11. [11]

      Miao W, Choi J P, Bard A J. Electrogenerated Chemiluminescence:The Tris(2, 2'-Bipyridine) Ruthenium(Ⅱ), (Ru(bpy)32+)/Tri-N-Propylamine(TPrA) System Revisited-A New Route Involving TPrA·+ Cation Radicals[J]. J Am Chem Soc, 2002,124:14478-14485. doi: 10.1021/ja027532v

    12. [12]

      Rubinstein I, Bard A J. Electrogenerated Chemiluminescence:Aqueous ECL Systems Based on Tris(2, 2'-Bipyridine)Ruthenium2+ and Oxalate or Organic Acids[J]. J Am Chem Soc, 1981,103(3):512-516. doi: 10.1021/ja00393a006

    13. [13]

      Dick J E, Renault C, Kim B K. Electrogenerated Chemiluminescence of Common Organic Luminophores in Water Using an Emulsion System[J]. J Am Chem Soc, 2014,136(39):13546-13549. doi: 10.1021/ja507198r

    14. [14]

      Dick J E, Renault C, Kim B K. Simultaneous Detection of Single Attoliter Droplet Collisions by Electrochemical and Electrogenerated Chemiluminescent Responses[J]. Angew Chem Int Ed, 2014,53(44):11859-11862. doi: 10.1002/anie.201407937

    15. [15]

      Xu S, Liu Y, Wang T. Positive Potential Operation of a Cathodic Electrogenerated Chemiluminescence Immunosensor Based on Luminol and Graphene for Cancer Biomarker Detection[J]. Anal Chem, 2011,83(10):3817-3823.  

    16. [16]

      Niu H, Yuan R, Chai Y. Highly Enhanced Electrochemiluminescence Based on Synergetic Catalysis Effect of Enzyme and Pd Nanoparticles for Ultrasensitive Immunoassay[J]. Chem Commun, 2011,47(29)8397. doi: 10.1039/c1cc12179k

    17. [17]

      Dong Y, Tian W, Ren S. Graphene Quantum Dots/L-Cysteine Coreactant Electrochemiluminescence System and Its Application in Sensing Lead(Ⅱ) Ions[J]. ACS Appl Mater Interfaces, 2014,6:646-1651.  

    18. [18]

      Jiang D, Du X, Liu Q. One-Step Thermal-Treatment Route to Fabricate Well-Dispersed ZnO Nanocrystals on Nitrogen-Doped Graphene for Enhanced Electrochemiluminescence and Ultrasensitive Detection of Pentachlorophenol[J]. ACS Appl Mater Interfaces, 2015,7(5):3093-3100. doi: 10.1021/am507163z

    19. [19]

      Wang C, Qian J, Wang K. Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels[J]. ACS Appl Mater Interfaces, 2015,7:26865-26873.  

    20. [20]

      Li L, Chen Y, Zhu J J. Recent Advances in Electrochemiluminescence Analysis[J]. Anal Chem, 2017,89(1):358-371. doi: 10.1021/acs.analchem.6b04675

    21. [21]

      Qi H, Chen Y H, Cheng C H. Electrochemistry and Electrogenerated Chemiluminescence of Three Phenanthrene Derivatives, Enhancement of Radical Stability, and Electrogenerated Chemiluminescence Efficiency by Substituent Groups[J]. J Am Chem Soc, 2013,135(24):9041-9049. doi: 10.1021/ja403166s

    22. [22]

      Pinaud F, Russo L, Pinet S. Enhanced Electrogenerated Chemiluminescence in Thermoresponsive Microgels[J]. J Am Chem Soc, 2013,135(15):5517-5520. doi: 10.1021/ja401011j

    23. [23]

      Li F, Yu Y, Cui H. Label-Free Electrochemiluminescence Immunosensor for Cardiac Troponin I Using Luminol Functionalized Gold Nanoparticles as a Sensing Platform[J]. Analyst, 2013,138(6):1844-1850. doi: 10.1039/c3an36805j

    24. [24]

      Zhang H, Han Z, Wang X. Sensitive Immunosensor for N-Terminal Pro-brain Natriuretic Peptide Based on N-(Aminobutyl)-N-(Ethylisoluminol)-Functionalized Gold Nanodots/Multiwalled Carbon Nanotube Electrochemiluminescence Nanointerface[J]. ACS Appl Mater Interfaces, 2015,7(14):7599-7604. doi: 10.1021/am509094p

    25. [25]

      Tokel N E, Bard A J. Electrogenerated Chemiluminescence Electrochemistry and Emission from Systems Containing Tris(2, 2'-Bipyridine)Ruthenium(Ⅱ) Dichloride[J]. J Am Chem Soc, 1972,94(8):2862-2863. doi: 10.1021/ja00763a056

    26. [26]

      Qiu R, Zhang X, Luo H. Mass Spectrometric Snapshots for Electrochemical Reactions[J]. Chem Sci, 2016,7(11):6684-6688. doi: 10.1039/C6SC01978A

    27. [27]

      Qi H, Qiu X, Xie D. Ultrasensitive Electrogenerated Chemiluminescence Peptide-Based Method for the Determination of Cardiac Troponin I Incorporating Amplification of Signal Reagent-Encapsulated Liposomes[J]. Anal Chem, 2013,85(8):3886-3894. doi: 10.1021/ac4005259

    28. [28]

      Dong M, Li M, Qi H. Electrogenerated Chemiluminescence Peptide-Based Biosensing Method for Cardiac Troponin I Using Peptide-Integrating Ru(bpy)32+-Functionalized Gold Nanoparticles as Nanoprobe[J]. Gold Bull, 2015,48:21-29. doi: 10.1007/s13404-015-0156-2

    29. [29]

      Nasiri Khonsari Y, Sun S. Recent Trends in Electrochemiluminescence Aptasensors and Their Applications[J]. Chem Commun, 2017,53(65):9042-9054.  

    30. [30]

      Shi L, Li X, Zhu W. Sandwich-Type Electrochemiluminescence Sensor for Detection of NT-ProBNP by Using High Efficiency Quench Strategy of Fe3O4@PDA Toward Ru(bpy)32+ Coordinated with Silver Oxalate[J]. ACS Sens, 2017,2(12):1774-1778. doi: 10.1021/acssensors.7b00809

    31. [31]

      Pur M R K, Hosseini M, Faridbod F. Highly Sensitive Label-Free Electrochemiluminescence Aptasensor for Early Detection of Myoglobin, a Biomarker for Myocardial Infarction[J]. Electrochim Acta, 2017,184(9):3529-3537.  

    32. [32]

      O'Reilly E J, Conroy P J, Hearty S. Electrochemiluminescence Platform for the Detection of C-Reactive Proteins:Application of Recombinant Antibody Technology to Cardiac Biomarker Detection[J]. RSC Adv, 2015,5(83):67874-67877. doi: 10.1039/C5RA08450D

    33. [33]

      Irkham , Watanabe T, Fiorani A. Co-Reactant-on-Demand ECL:Electrogenerated Chemiluminescence by the in Situ Production of S2O82- at Boron-Doped Diamond Electrodes[J]. J Am Chem Soc, 2016,138(48):15636-15641. doi: 10.1021/jacs.6b09020

    34. [34]

      Long Y M, Bao L, Zhao J Y. Revealing Carbon Nanodots as Coreactants of the Anodic Electrochemiluminescence of Ru(bpy)32+[J]. Anal Chem, 2014,86(15):7224-7228. doi: 10.1021/ac502405p

    35. [35]

      Venkateswara Raju C, Senthil Kumar S. Highly Sensitive Novel Cathodic Electrochemiluminescence of Tris(2, 2'-Bipyridine) Ruthenium(Ⅱ) Using Glutathione as a Co-reactant[J]. Chem Commun, 2017,53(49):6593-6596. doi: 10.1039/C7CC03349D

    36. [36]

      Qin X, Gu C, Wang M. Triethanolamine-Modified Gold Nanoparticles Synthesized by a One-Pot Method and Their Application in Electrochemiluminescent Immunoassy[J]. Anal Chem, 2018,90(4):2826-2832. doi: 10.1021/acs.analchem.7b04952

    37. [37]

      Wu P, Hou X, Xu J J. Ratiometric Fluorescence, Electrochemiluminescence, and Photoelectrochemical Chemo/Biosensing Based on Semiconductor Quantum Dots[J]. Nanoscale, 2016,8(16):8427-8442. doi: 10.1039/C6NR01912A

    38. [38]

      Yang X, Yu Y Q, Peng L Z. Strong Electrochemiluminescence from MOF Accelerator Enriched Quantum Dots for Enhanced Sensing of Trace cTnI[J]. Anal Chem, 2018,90(6):3995-4002. doi: 10.1021/acs.analchem.7b05137

    39. [39]

      Zheng H, Zhang Q, Hong Z. A Bifunctional Catalyst Based ECL Immunosensor for a Cardiac Biomarker Regulated by Oxygen Evolution Reaction[J]. Electrochim Acta, 2016,215:326-333. doi: 10.1016/j.electacta.2016.08.120

    40. [40]

      Bist I, Song B, Mosa I M. Electrochemiluminescent Array to Detect Oxidative Damage in ds-DNA Using[Os(bpy)2(Phen-Benz-COOH)]2+/Nafion/Graphene Films[J]. ACS Sens, 2016,1(3):272-278. doi: 10.1021/acssensors.5b00189

    41. [41]

      Qi W, Lai J, Gao W. Wireless Electrochemiluminescence with Disposable Minidevice[J]. Anal Chem, 2014,86(18):8927-8931.  

    42. [42]

      Zhang H R, Wang Y Z, Zhao W. Visual Color-Switch Electrochemiluminescence Biosensing of Cancer Cell Based on Multichannel Bipolar Electrode Chip[J]. Anal Chem, 2016,88(5):2884-2890. doi: 10.1021/acs.analchem.5b04716

    43. [43]

      Yang X, Zhao Y, Sun L. Electrogenerated Chemiluminescence Biosensor Array for the Detection of Multiple Ami Biomarkers[J]. Sens Actuators B, 2018,257:60-67. doi: 10.1016/j.snb.2017.10.108

    44. [44]

      Liang W, Fan C, Zhuo Y. Multiparameter Analysis-Based Electrochemiluminescent Assay for Simultaneous Detection of Multiple Biomarker Proteins on a Single Interface[J]. Anal Chem, 2016,88(9):4940-4948. doi: 10.1021/acs.analchem.6b00878

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    4. [4]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    5. [5]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

Metrics
  • PDF Downloads(7)
  • Abstract views(565)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return