Citation: XIAO Fan, CUI Yuanjing, QIAN Guodong. Metal-Organic Frameworks for Fluorescence Detection Applications[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1113-1125. doi: 10.11944/j.issn.1000-0518.2018.09.180169 shu

Metal-Organic Frameworks for Fluorescence Detection Applications

  • Corresponding author: CUI Yuanjing, cuiyj@zju.edu.cn QIAN Guodong, gdqian@zju.edu.cn
  • Received Date: 14 May 2018
    Revised Date: 15 May 2018
    Accepted Date: 22 May 2018

    Fund Project: the National Natural Science Foundation of China 51472217the National Natural Science Foundation of China 51772268Supported by the National Natural Science Foundation of China(No.51472217, No.51432001, No.51632008, No.51772268, No.U1609219)the National Natural Science Foundation of China U1609219the National Natural Science Foundation of China 51432001the National Natural Science Foundation of China 51632008

Figures(11)

  • Metal-organic frameworks (MOFs) is a kind of hybrid porous materials self-assembled by metal ions or clusters and organic ligands. Extremely high surface area and porosity, as well as adjustable structure and pore size endow MOFs with flexibility in designability and functionality. Because the metal ion centers, organic ligands and loaded guest molecules all could serve as luminescent centers, and respond specificly to ions or small molecules, Therefore, MOFs have plenty of applications in fluorescence detection. This article mainly reviews the research progress and application prospects of MOFs in fluorescence detection in recent years.
  • 加载中
    1. [1]

      Yaghi O M, Li G, Li H. Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework[J]. Nature, 1995,378(6558):703-706. doi: 10.1038/378703a0

    2. [2]

      Wang Y, Zhao M, Ping J. Bioinspired Design of Ultrathin 2D Bimetallic Metal-Organic Framework Nanosheets Used as Biomimetic Enzymes[J]. Adv Mater, 2016,28(21):4149-4155. doi: 10.1002/adma.201600108

    3. [3]

      Wee L H, Meledina M, Turner S. 1D-2D-3D Transformation Synthesis of Hierarchical Metal-Organic Framework Adsorbent for Multicomponent Alkane Separation[J]. J Am Chem Soc, 2017,139(2):819-828. doi: 10.1021/jacs.6b10768

    4. [4]

      Zhu L, Liu X Q, Jiang H L. Metal-Organic Frameworks for Heterogeneous Basic Catalysis[J]. Chem Rev, 2017,117(12):8129-8176. doi: 10.1021/acs.chemrev.7b00091

    5. [5]

      Wang D, Agnew D W, Yu X. A Metal-Organic Framework with Exceptional Activity for C-H Bond Amination[J]. Angew Chem Int Ed, 2018,57(2):511-515. doi: 10.1002/anie.201709420

    6. [6]

      Li B, Wen H M, Cui Y. Emerging Multifunctional Metal-Organic Framework Materials[J]. Adv Mater, 2016,28(40):8819-8860. doi: 10.1002/adma.v28.40

    7. [7]

      Li B, Cui X, O'Nolan D. An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity[J]. Adv Mater, 2017,29(47):1704210-1704216. doi: 10.1002/adma.201704210

    8. [8]

      Bai Y, Dou Y, Xie L H. Zr-Based Metal-Organic Frameworks:Design, Synthesis, Structure, and Applications[J]. Chem Soc Rev, 2016,45(8):2327-2367. doi: 10.1039/C5CS00837A

    9. [9]

      Teplensky M H, Fantham M, Li P. Temperature Treatment of Highly Porous Zirconium-Containing Metal-Organic Frameworks Extends Drug Delivery Release[J]. J Am Chem Soc, 2017,139(22):7522-7532. doi: 10.1021/jacs.7b01451

    10. [10]

      Yu J, Cui Y, Wu C D. Two-Photon Responsive Metal-Organic Framework[J]. J Am Chem Soc, 2015,137(12):4026-4029. doi: 10.1021/ja512552g

    11. [11]

      He H, Ma E, Cui Y. Polarized Three-Photon-Pumped Laser in a Single MOF Microcrystal[J]. Nat Commun, 2016,7:11087-11094. doi: 10.1038/ncomms11087

    12. [12]

      Cui Y, Yue Y, Qian G. Luminescent Functional Metal-Organic Frameworks[J]. Chem Rev, 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    13. [13]

      Zhang Y, Yuan S, Day G. Luminescent Sensors Based on Metal-Organic Frameworks[J]. Coord Chem Rev, 2018,354:28-45. doi: 10.1016/j.ccr.2017.06.007

    14. [14]

      Lustig W P, Mukherjee S, Rudd N D. Metal-Organic Frameworks:Functional Luminescent and Photonic Materials for Sensing Applications[J]. Chem Soc Rev, 2017,46(11):3242-3285. doi: 10.1039/C6CS00930A

    15. [15]

      Lan A, Li K, Wu H. A Luminescent Microporous Metal-Organic Framework for the Fast and Reversible Detection of High Explosives[J]. Angew Chem Int Ed, 2009,48(13):2334-2338. doi: 10.1002/anie.200804853

    16. [16]

      An J, Shade C, Chengelis-Czegan D. Zinc-Adeninate Metal-Organic Framework for Aqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting Lanthanide Cations[J]. J Am Chem Soc, 2011,133(5):1220-1223. doi: 10.1021/ja109103t

    17. [17]

      Wang C, Tian L, Zhu W. Dye@bio-MOF-1 Composite as a Dual-Emitting Platform for Enhanced Detection of a Wide Range of Explosive Molecules[J]. ACS Appl Mater Interfaces, 2017,9(23):20076-20085. doi: 10.1021/acsami.7b04172

    18. [18]

      Buso D, Jasieniak J, Lay M. Highly Luminescent Metal-Organic Frameworks Through Quantum Dot Doping[J]. Small, 2012,8(1):80-88. doi: 10.1002/smll.201100710

    19. [19]

      Xie D, Ma Y, Gu Y. Bifunctional NH2-MIL-88(Fe) Metal-Organic Framework Nanooctahedra for Highly Sensitive Detection and Efficient Removal of Arsenate in Aqueous Media[J]. J Mater Chem A, 2017,5(45):23794-23804. doi: 10.1039/C7TA07934F

    20. [20]

      Douvali A, Tsipis A, Eliseeva S. Turn-On Luminescence Sensing and Real-Time Detection of Traces of Water in Organic Solvents by a Flexible Metal-Organic Framework[J]. Angew Chem Int Ed, 2015,54(5):1651-1656. doi: 10.1002/anie.201410612

    21. [21]

      Lim K, Jeong S, Kang D. Luminescent Metal-Organic Framework Sensor:Exceptional Cd2+ Turn-On Detection and First in Situ Visualization of Cd2+ Ion Diffusion into a Crystal[J]. Chem Eur J, 2017,23(20):4803-4809. doi: 10.1002/chem.v23.20

    22. [22]

      Chen W, Meng X, Zhuang G. A Superior Fluorescent Sensor for Al3+ and UO22+ Based on a Co(Ⅱ) Metal-Organic Framework with Exposed Pyrimidyl Lewis Base Sites[J]. J Mater Chem A, 2017,5(25):13079-13085. doi: 10.1039/C7TA01546A

    23. [23]

      Wang M, Guo L, Cao D. Amino-Functionalized Luminescent Metal-Organic Framework Test Paper for Rapid and Selective Sensing of SO2 Gas and Its Derivatives by Luminescence Turn-On Effect[J]. Anal Chem, 2018,90(5):3608-3614. doi: 10.1021/acs.analchem.8b00146

    24. [24]

      Zhu S, Yan B. A Novel Covalent Post-Synthetically Modified MOF Hybrid as a Sensitive and Selective Fluorescent Probe for Al3+ Detection in Aqueous Media[J]. Dalton Trans, 2018,47(5):1674-1681. doi: 10.1039/C7DT04266C

    25. [25]

      Zhang X, Liu X, Zhang N. A Highly Selective and Sensitive Zn(Ⅱ) Coordination Polymer Luminescent Sensor for Al3+ and NACs in the Aqueous Phase[J]. Inorg Chem Front, 2017,4(11):1888-1894. doi: 10.1039/C7QI00549K

    26. [26]

      Wang B, Yang Q, Guo C. Stable Zr(Ⅳ)-Based Metal-Organic Frameworks with Predesigned Functionalized Ligands for Highly Selective Detection of Fe(Ⅲ) Ions in Water[J]. ACS Appl Mater Interfaces, 2017,9(11):10286-10295. doi: 10.1021/acsami.7b00918

    27. [27]

      Dang S, Ma E, Sun Z. A Layer-Structured Eu-MOF as a Highly Selective Fluorescent Probe for Fe3+ Detection Through a Cation-Exchange Approach[J]. Mater Chem, 2012,22(33):16920-16926. doi: 10.1039/c2jm32661b

    28. [28]

      Zhao D, Liu X, Zhao Y. Luminescent Cd(Ⅱ)-Organic Frameworks with Chelating NH2 Sites for Selective Detection of Fe(Ⅲ) and Antibiotics[J]. J Mater Chem A, 2017,5(30):15797-15807. doi: 10.1039/C7TA03849F

    29. [29]

      Tan H, Liu B, Chen Y. Lanthanide Coordination Polymer Nanoparticles for Sensing of Mercury(Ⅱ) by Photoinduced Electron Transfer[J]. ACS Nano, 2012,6(12):10505-10511. doi: 10.1021/nn304469j

    30. [30]

      Ji G, Liu J, Gao X. A Luminescent Lanthanide MOF for Selectively and Ultra-high Sensitively Detecting Pb2+ Ions in Aqueous Solution[J]. J Mater Chem A, 2017,5(21):10200-10205. doi: 10.1039/C7TA02439H

    31. [31]

      Zhang X, Xia T, Jiang K. Highly Sensitive and Selective Detection of Mercury(Ⅱ) Based on a Zirconium Metal-Organic Framework in Aqueous Media[J]. J Solid State Chem, 2017,253:277-281. doi: 10.1016/j.jssc.2017.06.008

    32. [32]

      Krämer R. Fluorescent Chemosensors for Cu2+ Ions:Fast, Selective, and Highly Snesitive[J]. Angew Chem Int Ed, 1998,37(6):772-773. doi: 10.1002/(ISSN)1521-3773

    33. [33]

      Que E, Domaille D, Chang C. Metals in Neurobiology:Probing Their Chemistry and Biology with Molecular Imaging[J]. Chem Rev, 2008,108(5):1517-1549. doi: 10.1021/cr078203u

    34. [34]

      Li L, Shen S, Lin R. Rapid and Specific Luminescence Sensing of Cu(Ⅱ) Ions with a Porphyrinic Metal-Organic Framework[J]. Chem Commun, 2017,53(72):9986-9989. doi: 10.1039/C7CC04250G

    35. [35]

      Chen Y, Jiang H. Porphyrinic Metal-Organic Framework Catalyzed Heck-Reaction:Fluorescence "Turn-On" Sensing of Cu(Ⅱ) Ion[J]. Chem Mater, 2016,28(18):6698-6704. doi: 10.1021/acs.chemmater.6b03030

    36. [36]

      Wu Q, Anslyn E. Catalytic Signal Amplification Using a Heck Reaction. An Example in the Fluorescence Sensing of Cu(Ⅱ)[J]. J Am Chem Soc, 2004,126(45):14682-14683. doi: 10.1021/ja0401038

    37. [37]

      Wang J, Chen H, Ru F. Encapsulation of Dual-Emitting Fluorescent Magnetic Nanoprobe in Metal-Organic Frameworks for Ultrasensitive Ratiometric Detection of Cu2+[J]. Chem Eur J, 2018,24(18):3499-3505.  

    38. [38]

      Hong Y, Lam J, Tang B. Aggregation-Induced Emission[J]. Chem Soc Rev, 2011,40(11):5361-5388. doi: 10.1039/c1cs15113d

    39. [39]

      Li Q, Wu X, Huang X. Tailoring the Fluorescence of AIE-Active Metal-Organic Frameworks for Aqueous Sensing of Metal Ions[J]. ACS Appl Mater Interfaces, 2018,10(4):3801-3809. doi: 10.1021/acsami.7b17762

    40. [40]

      Lu T, Zhang L, Sun M. Amino-Functionalized Metal-Organic Frameworks Nanoplates-Based Energy Transfer Probe for Highly Selective Fluorescence Detection of Free Chlorine[J]. Anal Chem, 2016,88(6):3413-3420. doi: 10.1021/acs.analchem.6b00253

    41. [41]

      Yang Z, Wang M, Wang X. Boric-Acid-Functional Lanthanide Metal-Organic Frameworks for Selective Ratiometric Fluorescence Detection of Fluoride Ions[J]. Anal Chem, 2017,89(3):1930-1936. doi: 10.1021/acs.analchem.6b04421

    42. [42]

      Karmakar A, Joarder B, Mallick A. Aqueous Phase Sensing of Cyanide Ions Using a Hydrolytically Stable Metal-Organic Framework[J]. Chem Commun, 2017,53(7):1253-1256. doi: 10.1039/C6CC08557A

    43. [43]

      Yu J, Cui Y, Xu H. Confinement of Pyridinium Hemicyanine Dye Within an Anionic Metal-Organic Framework for Two-Photon-Pumped Lasing[J]. Nat Commun, 2013,4:2719-1725. doi: 10.1038/ncomms3719

    44. [44]

      Yang J, Dai Y, Zhu X. Metal-Organic Frameworks with Inherent Recognition Sites for Selective Phosphate Sensing Through Their Coordination-Induced Fluorescence Enhancement Effect[J]. J Mater Chem A, 2015,3(14):7445-7452. doi: 10.1039/C5TA00077G

    45. [45]

      Zhang Y, Wang Q, Lu J. Synergistic Photoelectrochemical Reduction of Cr(Ⅵ) and Oxidation of Organic Pollutants by g-C3N4/TiO2-NTs Electrodes[J]. Chemosphere, 2016,162:55-63. doi: 10.1016/j.chemosphere.2016.07.064

    46. [46]

      Yao Z, Li G, Xu J. A Water-Stable Luminescent Zn Metal-Organic Framework as Chemosensor for High-Efficiency Detection of Cr-Anions(Cr2O72- and CrO42-) in Aqueous Solution[J]. Chem Eur J, 2018,24(13):3192-3198. doi: 10.1002/chem.201705328

    47. [47]

      Chen L, Ye J, Wang H. Ultrafast Water Sensing and Thermal Imaging by a Metal-Organic Framework with Switchable Luminescence[J]. Nat Commun, 2017,8:15985-15994. doi: 10.1038/ncomms15985

    48. [48]

      Hu Z, Lustig W, Zhang J. Effective Detection of Mycotoxins by a Highly Luminescent Metal-Organic Framework[J]. J Am Chem Soc, 2015,137(51):16209-15215. doi: 10.1021/jacs.5b10308

    49. [49]

      Guo L, Wang M, Cao D. A Novel Zr-MOF as Fluorescence Turn-On Probe for Real-Time Detecting H2S Gas and Fingerprint Identification[J]. Small, 2018,14(17):1703822-1703827. doi: 10.1002/smll.v14.17

    50. [50]

      Nandi S, Banesh S, Trivedi V. A Dinitro-Functionalized Metal-Organic Framework Featuring Visual and Fluorogenic Sensing of H2S in Living Cells, Human Blood Plasma and Environmental Samples[J]. Analyst, 2018,143(6):1482-1491. doi: 10.1039/C7AN01964E

    51. [51]

      Zhang X, Jiang K, He H. A Stable Lanthanide-Functionalized Nanoscale Metal-Organic Framework as a Fluorescent Probe for pH[J]. Sens Actuators B, 2018,254:1069-1077. doi: 10.1016/j.snb.2017.07.172

    52. [52]

      Wu S, Lin Y, Liu J. Rapid Detection of the Biomarkers for Carcinoid Tumors by a Water Stable Luminescent Lanthanide Metal-Organic Framework Sensor[J]. Adv Funct Mater, 2018,28(17):1707169-1707178. doi: 10.1002/adfm.v28.17

    53. [53]

      Deng J, Wang K, Wang M. Mitochondria Targeted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells[J]. J Am Chem Soc, 2017,139(16):5877-5882. doi: 10.1021/jacs.7b01229

    54. [54]

      Mei J, Leung N, Kwok R. Aggregation-Induced Emission:Together We Shine, United We Soar?[J]. Chem Rev, 2015,115(21):11718-11940. doi: 10.1021/acs.chemrev.5b00263

    55. [55]

      Ojida A, Park S, Mito-oka Y. Efficient Fluorescent ATP-Sensing Based on Coordination Chemistry Under Aqueous Neutral Conditions[J]. Tetrahedron Lett, 2002,43(35):6193-6195. doi: 10.1016/S0040-4039(02)01317-5

    56. [56]

      Yue D, Zhao D, Zhang J. A Luminescent Cerium Metal-Organic Framework for the Turn-On Sensing of Ascorbic Acid[J]. Chem Commun, 2017,53(81):11221-11224. doi: 10.1039/C7CC05805E

    57. [57]

      Kneipp J, Kneipp H, Kneipp K. SERS-A Single-Molecule and Nanoscale Tool for Bioanalytics[J]. Chem Soc Rev, 2008,37(5):1052-1060. doi: 10.1039/b708459p

    58. [58]

      Qiao X, Su B, Liu C. Selective Surface Enhanced Raman Scattering for Quantitative Detection of Lung Cancer Biomarkers in Superparticle@MOF Structure[J]. Adv Mater, 2018,30(50):1702275-1702282.  

    59. [59]

      Handa S, Gnanadesikan V, Matsunaga S. Heterobimetallic Transition Metal/Rare Earth Metal Bifunctional Catalysis:A Cu/Sm/Schiff Base Complex for syn-Selective Catalytic Asymmetric Nitro-Mannich Reaction[J]. J Am Chem Soc, 2010,132(13):4925-4934. doi: 10.1021/ja100514y

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    3. [3]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    6. [6]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    14. [14]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    19. [19]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    20. [20]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(14)
  • Abstract views(1021)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return