Colloidal State of Active Cation and Its Limit for Electrochemical Energy Storage
- Corresponding author: XUE Dongfeng, dongfeng@ciac.ac.cn
Citation:
CHEN Kunfeng, XUE Dongfeng. Colloidal State of Active Cation and Its Limit for Electrochemical Energy Storage[J]. Chinese Journal of Applied Chemistry,
;2018, 35(9): 1067-1075.
doi:
10.11944/j.issn.1000-0518.2018.09.180164
Wang M, Jiang C, Zhang S. Reversible Calcium Alloying Enables a Practical Room-Temperature Rechargeable Calcium-Ion Battery with a High Discharge Voltage[J]. Nat Chem, 2018,10(6):667-672. doi: 10.1038/s41557-018-0045-4
Wang F, Borodin O, Gao T. Highly Reversible Zinc Metal Anode for Aqueous Batteries[J]. Nat Mater, 2018,17(6):543-549. doi: 10.1038/s41563-018-0063-z
Wang G, Yu M, Wang J. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes[J]. Adv Mater, 2018,30(20)1800533. doi: 10.1002/adma.v30.20
Ma Y, Chang H, Zhang M. Graphene-based Materials for Lithium-Ion Hybrid Supercapacitors[J]. Adv Mater, 2015,27(36):5296-5308. doi: 10.1002/adma.201501622
Augustyn V, Come J, Lowe M A. High-rate Electrochemical Energy Storage Through Li+ Intercalation Pseudocapacitance[J]. Nat Mater, 2013,12(6):518-522. doi: 10.1038/nmat3601
Kim H, Cook J B, Lin H. Oxygen Vacancies Enhance Pseudocapacitive Charge Storage Properties of MoO3-x[J]. Nat Mater, 2017,16(5):454-460.
Lukatskaya M, Kota S, Lin Z. Ultra-high-rate Pseudocapacitive Energy Storage in Two-Dimensional Transition Metal Carbides[J]. Nat Energy, 2017,2(8)17105. doi: 10.1038/nenergy.2017.105
Chen K, Song S, Liu F. Structural Design of Graphene for Use in Electrochemical Energy Storage Devices[J]. Chem Soc Rev, 2015,44(17):6230-6257. doi: 10.1039/C5CS00147A
Zhai T, Sun S, Liu X. Achieving Insertion-Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance[J]. Adv Mater, 2018,30(12)1706640. doi: 10.1002/adma.v30.12
Soto F, Yan P, Engelhard M H. Tuning the Solid Electrolyte Interphase for Selective Li-and Na-Ion Storage in Hard Carbon[J]. Adv Mater, 2017,29(18)1606860. doi: 10.1002/adma.201606860
Liu K, Pei A, Lee H R. Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer[J]. J Am Chem Soc, 2017,139(13):4815-4820. doi: 10.1021/jacs.6b13314
Choi J W, Aurbach D. Promise and Reality of Post-lithium-ion Batteries with High Energy Densities[J]. Nat Rev Mater, 2016,1(4)16013. doi: 10.1038/natrevmats.2016.13
Seo D, Lee J, Urban A. The Structural and Chemical Origin of the Oxygen Redox Activity in Layered and Cation-disordered Li-Excess Cathode Materials[J]. Nat Chem, 2016,8(7):692-697. doi: 10.1038/nchem.2524
Assat G, Tarascon J. Fundamental Understanding and Practical Challenges of Anionic Redox Activity in Li-Ion Batteries[J]. Nat Energy, 2018,3:373-386. doi: 10.1038/s41560-018-0097-0
Yu M, Lin D, Feng H. Boosting the Energy Density of Carbon-based Aqueous Supercapacitors by Optimizing the Surface Charge[J]. Angew Chem Int Ed, 2017,56(20)5454. doi: 10.1002/anie.201701737
Chen K F, Xue D F. Colloidal Supercapattery:Redox Ions in Electrode and Electrolyte[J]. Chem Rec, 2018,18(3):282-292. doi: 10.1002/tcr.v18.3
Chen K F, Xue D F. Colloidal Paradigm in Supercapattery Electrode Systems[J]. Nanotechnology, 2018,29(2)024003. doi: 10.1088/1361-6528/aa9bfd
Chen K F, Xue D F. Rare Earth and Transitional Metal Colloidal Supercapacitors[J]. Sci China Technol Sci, 2015,58(11):1768-1778. doi: 10.1007/s11431-015-5915-z
CHEN Ke. Applications of Colloids in Glass Researches[J]. Acta Phys Sin, 2017,66(17)178201. doi: 10.7498/aps.66.178201
YANG Yuesuo, WANG Yuanyuan, SONG Xiaoming. Co-transport of Colloids and Facilitated Contaminants in Subsurface Environment[J]. CIESC J, 2017,68(1):23-36.
ZHOU Chao, WANG Wei, ZHANG Hepeng. Individual Behaviors and Dynamic Self-assembly of Active Colloids[J]. Chinese Sci Bull, 2017,62(2/3):194-208.
LU Changyu. Performance Studies of Silica Gel Electrolytes on Rechargeable Hybrid Aqueous Batteries[D]. Xi'an: Chang'an University, 2017(in Chinese).
Liu C, Neale Z G, Cao G. Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries[J]. Mater Today, 2016,19(2):109-123. doi: 10.1016/j.mattod.2015.10.009
Yoo H D, Markevich E, Salitra G. On the Challenge of Developing Advanced Technologies for Electrochemical Energy Storage and Conversion[J]. Mater Today, 2014,17(3):110-121. doi: 10.1016/j.mattod.2014.02.014
Billaud J, Eames C, Tapia-Ruiz N. Evidence of Enhanced Ion Transport in Li-Rich Silicate Intercalation Materials[J]. Adv Energy Mater, 2017,7(11)1601043. doi: 10.1002/aenm.v7.11
Lee J, Kitchaev D A, Kwon D. Reversible Mn2+/Mn4+ Double Redox in Lithium-Excess Cathode Materials[J]. Nature, 2018,556(7700):185-190. doi: 10.1038/s41586-018-0015-4
Housel L M, Wang L, Abraham A. Investigation of α-MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage[J]. Acc Chem Res, 2018,51(3):575-582. doi: 10.1021/acs.accounts.7b00478
Chen K, Xue D. Materials Chemistry Toward Electrochemical Energy Storage[J]. J Mater Chem A, 2016,4(20):7522-7537. doi: 10.1039/C6TA01527A
Schmuch R, Wagner R, Hörpel G. Performance and Cost of Materials for Lithium-based Rechargeable Automotive Batteries[J]. Nat Energy, 2018,3(4):267-278. doi: 10.1038/s41560-018-0107-2
Chen K, Xue D. Colloidal Supercapacitor Electrode Materials[J]. Mater Res Bull, 2016,83:201-206. doi: 10.1016/j.materresbull.2016.06.013
CHEN Kunfeng, XUE Dongfeng. Colloidal Ion Supercapacitor[J]. J Electrochem, 2015,21(6):534-542.
Winter M, Brodd R J. What Are Batteries, Fuel Cells, and Supercapacitors[J]. Chem Rev, 2004,104(10):4245-4269. doi: 10.1021/cr020730k
LI Songlin, ZHOU Yaping, LIU Junji. Physical Chemistry(Fifth Edition)[M]. Beijing:Higher Education Press, 2010:324-326(in Chinese).
LU Xia, LI Hong. Fundamental Scientific Aspects of Lithium Batteries(Ⅱ)-Defect Chemistry in Battery Materials[J]. Energy Storage Sci Technol, 2013,2(2):157-164. doi: 10.3969/j.issn.2095-4239.2013.02.010
YANG Yong. Solid State Electrochemistry[M]. Beijing:Chemical Industry Press, 2017:266-302(in Chinese).
Chen K, Xue D. Nanofabrication Strategies for Advanced Electrode Materials[J]. Nanofabrication, 2017,3(1):1-15. doi: 10.2478/nanofab-2017-0028
Chen K, Xue D. Ionic Supercapacitor Electrode Materials:A System-Level Design of Electrode and Electrolyte for Transforming Ions into Colloids[J]. Colloids Interface Sci Commun, 2014,1(1):39-42.
Zhu C, Usiskin R E, Yu Y. The Nanoscale Circuitry of Battery Electrodes[J]. Science, 2017,358(6369)eaao2808. doi: 10.1126/science.aao2808
Chen C, Maie J. Decoupling Electron and Ion Storage and the Path from Interfacial Storage to Artificial Electrodes[J]. Nat Energy, 2018,3(2):102-108.
Dubal D P, Chodankar N R, Kim D H. Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics[J]. Chem Soc Rev, 2018,47(6):2065-2129. doi: 10.1039/C7CS00505A
LI Gong, CHEN Kunfeng, JIN Jingye. La3+-doped NiCo Layered Double Hydroxide Nanosheets and Their Supercapacitive Performance[J]. Chinese J Appl Chem, 2017,34(1):71-75.
Amin R, Maier J, Balaya P. Ionic and Electronic Transport in Single Crystalline LiFePO4 Grown by Optical Floating Zone Technique[J]. Solid State Ion, 2008,179(27/32):1683-1687.
Park M, Zhang X, Chung M. A Review of Conduction Phenomena in Li-Ion Batteries[J]. J Power Sources, 2010,195(24):7904-7929. doi: 10.1016/j.jpowsour.2010.06.060
Kaskhedikar N A, Maier J. Lithium Storage in Carbon Nanostructures[J]. Adv Mater, 2009,21(25/36):2664-2680.
Kuhne M, Paolucci F, Popovic J. Ultrafast Lithium Diffusion in Bilayer Graphene[J]. Nat Nanotechnol, 2017,12(9):895-900. doi: 10.1038/nnano.2017.108
Liu M, Lin C, Gu Y. Oxygen Reduction Contributing to Charge Transfer During the First Discharge of the CeO2-Bi2Fe4O9-Li Battery:In Situ X-ray Diffraction and X-ray Absorption Near-Edge Structure Investigation[J]. J Phys Chem C, 2014,118(27):14711-14722. doi: 10.1021/jp4105689
Liang X, Chen K, Xue D. A Flexible and Ultrahigh Energy Density Capacitor via Enhancing Surface/Interface of Carbon Cloth Supported Colloids[J]. Adv Energy Mater, 2018,81703329. doi: 10.1002/aenm.v8.16
Wang J, Polleux J, Lim J. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2(Anatase) Nanoparticles[J]. J Phys Chem C, 2007,111(40):14925-14931. doi: 10.1021/jp074464w
Mitchell J B, Lo W C, Genc A. Transition from Battery to Pseudocapacitor Behavior via Structural Water in Tungsten Oxide[J]. Chem Mater, 2017,29(9):3928-3937. doi: 10.1021/acs.chemmater.6b05485
CHEN Kunfeng, XUE Dongfeng. Evaluation of Special Capacitance of Colloidal Ionic Supercapacitor System[J]. Chinese J Appl Chem, 2016,33(1):8-24.
LIANG Xitong, PAN Wei, CHEN Kunfeng. Research and Development of Novel Supercapacitors[J]. Chinese J Appl Chem, 2016,33(8):867-875.
Chen K, Xue D. High Energy Density Hybrid Supercapacitor:In-Situ Functionalization of Vanadium-based Colloidal Cathode[J]. ACS Appl Mater Interfaces, 2016,8(43):29522-29528. doi: 10.1021/acsami.6b10638
Chen K, Xue D, Sridhar K. Colloidal Pseudocapacitor:Nanoscale Aggregation of Mn Colloids from MnCl2 under Alkaline Condition[J]. J Power Sources, 2015,279(1):365-371.
Chen X, Chen K, Wang H. A Colloidal Pseudocapacitor:Direct Use of Fe(NO3)3 in Electrode Can Lead to a High Performance Alkaline Supercapacitor System[J]. J Colloid Interface Sci, 2015,444(1):49-57.
Chen K, Yang Y, Li K. CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials[J]. ACS Sustainable Chem Eng, 2014,2(3):440-444. doi: 10.1021/sc400338c
Chen K, Xue D. In situ Electrochemical Activation of Ni-based Colloids from an NiCl2 Electrode and Their Advanced Energy Storage Performance[J]. Nanoscale, 2016,8(39):17090-17095. doi: 10.1039/C6NR06325J
Chen K, Song S, Li K. Water-soluble Inorganic Salts with Ultrahigh Specific Capacitance:Crystallization Transformation Investigation of CuCl2 Electrodes[J]. CrystEngComm, 2013,15(47):10367-10373. doi: 10.1039/c3ce41802b
Chen K F, Xue D F. Crystallization of Tin Chloride for Promising Pseudocapacitor Electrode[J]. CrystEngComm, 2014,16(21):4610-4618. doi: 10.1039/C4CE00380B
Chen K F, Xue D F. Water-soluble Inorganic Salt with Ultrahigh Specific Capacitance:Ce(NO3)3 can be Designed as Excellent Pseudocapacitor Electrode[J]. J Colloid Interface Sci, 2014,416(1):172-176.
Chen K, Xue D. YbCl3 Electrode in Alkaline Aqueous Electrolyte with High Pseudocapacitance[J]. J Colloid Interface Sci, 2014,424(1):84-89.
Chen K, Xue D. Formation of Electroactive Colloids via in-Situ Coprecipitation under Electric Field:Erbium Chloride Alkaline Aqueous Pseudocapacitor[J]. J Colloid Interface Sci, 2014,430(1):265-271.
Chen X, Chen K, Wang H. Crystallization of Fe3+ in an Alkaline Aqueous Pseudocapacitor System[J]. CrystEngComm, 2014,16(29):6707-6715. doi: 10.1039/c4ce00660g
Chen K, Song S, Xue D. An Ionic Aqueous Pseudocapacitor System:Electroactive Ions in Both Salt-Electrode and Redox-Electrolyte[J]. RSC Adv, 2014,4(44):23338-23343. doi: 10.1039/c4ra03037k
Chen K, Yin S, Xue D. Binary AxB1-x Ionic Alkaline Pseudocapacitor System Involving Manganese, Iron, Cobalt, and Nickel:Formation of Electroactive Colloids via in-Situ Electric Field Assisted Coprecipitation[J]. Nanoscale, 2015,7(3):1161-1166. doi: 10.1039/C4NR05880A
Chen X, Chen K, Wang H. Functionality of Fe(NO3)3 Salts as Both Positive and Negative Pseudocapacitor Electrodes in Alkaline Aqueous Electrolyte[J]. Electrochim Acta, 2014,147(1):216-224.
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
a.structure design diagram for rapid kinetic characteristics of colloidal ions; b.kinetic characteristics of battery and supercapacitor-type electrode; c.dynamic characteristics of V3+ colloid electrode
a.CV curve of Ni2+ and Fe3+ colloid electrodes; b.charge-discharge curve of Ni//Fe colloid supercapattery; c.power density and energy density diagram; d.cycle stability curve