Citation: SU Juan, CHEN Jiesheng. Research Progress on Porous Titania Materials and Their Performances[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1126-1132. doi: 10.11944/j.issn.1000-0518.2018.09.180162 shu

Research Progress on Porous Titania Materials and Their Performances

  • Corresponding author: CHEN Jiesheng, chemcj@sjtu.edu.cn
  • Received Date: 8 May 2018
    Revised Date: 21 May 2018
    Accepted Date: 23 May 2018

    Fund Project: the National Natural Science Foundation of China 21331004the National Natural Science Foundation of China 21720102002the National Natural Science Foundation of China 21673140Supported by the National Natural Science Foundation of China(No.21673140, No.21720102002, No.21331004)

Figures(3)

  • Porous titania (TiO2) materials have important values and potentials in the fields of catalysis, energy, sensing, etc., due to their outstanding physical and chemical properties. In some applications associated with heterogeneous reactions, porous structures of TiO2 are advantageous because they have rich channels for mass transfer and surface active sites with tunable pore sizes. Nowadays, porous TiO2 materials are constantly developed and optimized in order to promote their industry applications. This review focuses on the research progress of porous TiO2 and their applications in photocatalysis, photogenerated electron storage, and gas sensing, in which the performance regulated through the design of structures and defects are introduced and discussed. Our research work about a series of porous TiO2 functional materials based on photochemical synthesis is specially introduced. Finally, the key issues and development prospects of porous TiO2 and their performances are also discussed.
  • 加载中
    1. [1]

      Chen X, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chem Rev, 2007,107(7):2891-2959. doi: 10.1021/cr0500535

    2. [2]

      Chen X, Liu L, Yu P Y. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals[J]. Science, 2011,331(6018):746-750. doi: 10.1126/science.1200448

    3. [3]

      Su J, Chen J S. Synthetic Porous Materials Applied in Hydrogenation Reactions[J]. Micropor Mesopor Mater, 2017,237:246-259. doi: 10.1016/j.micromeso.2016.09.039

    4. [4]

      Yang Y, Liang Y, Wang G. Enhanced Gas-Sensing Properties of the Hierarchical TiO2 Hollow Microspheres with Exposed High-Energy {001} Crystal Facets[J]. ACS Appl Mater Interfaces, 2015,7(44):24902-24908. doi: 10.1021/acsami.5b08372

    5. [5]

      Du J, Lai X, Yang N. Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films:Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities[J]. ACS Nano, 2011,5(1):590-596. doi: 10.1021/nn102767d

    6. [6]

      Seo M H, Yuasa M, Kida T. Microstructure Control of TiO2 Nanotubular Films for Improved VOC Sensing[J]. Sens Actuators B, 2011,154(2):251-256. doi: 10.1016/j.snb.2010.01.069

    7. [7]

      Gawri I, Ridhi R, Sing K P h. Chemically Synthesized TiO2 and PANI/TiO2 Thin Films for Ethanol Sensing Applications[J]. Mater Res Express, 2018,5(2)025303. doi: 10.1088/2053-1591/aaa9f1

    8. [8]

      Pan J H, Zhang X, Du A J. Self-Etching Reconstruction of Hierarchically Mesoporous F-TiO2 Hollow Microspherical Photocatalyst for Concurrent Membrane Water Purifications[J]. J Am Chem Soc, 2008,130(34):11256-11257. doi: 10.1021/ja803582m

    9. [9]

      Zhang J, Xing Z, Cui J. C, N Co-doped Porous TiO2 Hollow Sphere Visible Light Photocatalysts for Efficient Removal of Highly Toxic Phenolic Pollutants[J]. Dalton Trans, 2018,47(14):4877-4884. doi: 10.1039/C8DT00262B

    10. [10]

      Li L, Bai S, Yin W J. A Novel Etching and Reconstruction Route to Ultrathin Porous TiO2 Hollow Spheres for Enhanced Photocatalytic Hydrogen Evolution[J]. Int J Hydrogen Energy, 2016,41(3):1627-1634. doi: 10.1016/j.ijhydene.2015.10.110

    11. [11]

      Wei H, McMaster W A, Tan J Z Y. Tricomponent Brookite/anatase TiO2/g-C3N4 Heterojunction in Mesoporous Hollow Microspheres for Enhanced Visible-light Photocatalysis[J]. J Mater Chem A, 2018,6(16):7236-7245. doi: 10.1039/C8TA00386F

    12. [12]

      Pang L, Wang X, Tang X. Enhanced Photocatalytic Performance of Porous TiO2 Nanobelts with Phase Junctions[J]. Solid State Sci, 2015,39:29-33. doi: 10.1016/j.solidstatesciences.2014.11.004

    13. [13]

      Yao Y C, Dai X R, Hu X Y. Synthesis of Ag-decorated Porous TiO2 Nanowires Through a Sunlight Induced Reduction Method and Its Enhanced Photocatalytic Activity[J]. Appl Surf Sci, 2016,387:469-476. doi: 10.1016/j.apsusc.2016.06.130

    14. [14]

      Petkovich N D, Stein A. Controlling Macro-and Mesostructures with Hierarchical Porosity Through Combined Hard and Soft Templating[J]. Chem Soc Rev, 2013,42(9):3721-3739. doi: 10.1039/C2CS35308C

    15. [15]

      Song Y, Li N, Chen D. N-Doped and CdSe-Sensitized 3D-Ordered TiO2 Inverse Opal Films for Synergistically Enhanced Photocatalytic Performance[J]. ACS Sustainable Chem Eng, 2018,6(3):4000-4007. doi: 10.1021/acssuschemeng.7b04395

    16. [16]

      Purbia R, Borah R, Paria S. Carbon-Doped Mesoporous Anatase TiO2 Multi-Tubes Nanostructures for Highly Improved Visible Light Photocatalytic Activity[J]. Inorg Chem, 2017,56(16):10107-10116. doi: 10.1021/acs.inorgchem.7b01864

    17. [17]

      Zhang Z, Zuo F, Feng P. TiO2 Hard Template Synthesis of Crystalline Mesoporous Anatase TiO2 for Photocatalytic Hydrogen Evolution[J]. J Mater Chem, 2010,20:2206-2212. doi: 10.1039/b921157h

    18. [18]

      Wang H, Liu H, Wang S. Influence of Tunable Pore Size on Photocatalytic and Photoelectrochemical Performances of Hierarchical Porous TiO2/C Nanocomposites Synthesized via Dual-Templating[J]. Appl Catal B:Environ, 2018,224:341-349. doi: 10.1016/j.apcatb.2017.10.039

    19. [19]

      Liu B, Peng L. Facile Formation of Mixed Phase Porous TiO2 Nanotubes and Enhanced Visible-light Photocatalytic Activity[J]. J Alloy Compd, 2013,571:145-152. doi: 10.1016/j.jallcom.2013.03.221

    20. [20]

      Zou X X, Li G D, Chen J S. Light-induced Formation of Porous TiO2 with Superior Electron-storing Capacity[J]. Chem Commun, 2010,46(12):2112-2114. doi: 10.1039/b924840d

    21. [21]

      Su J, Zou X X, Chen J S. Porous Vanadium-doped Titania with Active Hydrogen:A Renewable Reductant for Chemoselective Hydrogenation of Nitroarenes under Ambient Conditions[J]. Chem Commun, 2012,48(72):9032-9034. doi: 10.1039/c2cc33969b

    22. [22]

      Jia D, Qi Z, Li X. 3D Hierarchical Macro/mesoporous TiO2 with Nanoporous or Nanotubular Structures and Their Core/shell Composites Achieved by Anodization[J]. CrystEngComm, 2017,19(18):2509-2516. doi: 10.1039/C7CE00429J

    23. [23]

      Su J, Zou X X, Chen J S. Room-temperature Spontaneous Crystallization of Porous Amorphous Titania for High-surface-area Anatase Photocatalyst[J]. Chem Commun, 2013,49(74):8217-8219. doi: 10.1039/c3cc43772h

    24. [24]

      Li Y N, Chen Z Y, Wang M Q. Interface Engineered Construction of Porous g-C3N4/TiO2 Heterostructure for Enhanced Photocatalysis of Organic Pollutants[J]. Appl Surf Sci, 2018,440:229-236. doi: 10.1016/j.apsusc.2018.01.106

    25. [25]

      Su J, Zou X X, Chen J S. Self-modification of Titanium Dioxide Materials by Ti3+ and/or Oxygen Vacancies:New Insights into Defect Chemistry of Metal Oxides[J]. RSC Adv, 2014,4(27):13979-13988. doi: 10.1039/C3RA47757F

    26. [26]

      Zuo F, Wang L, Wu T. Self-Doped Ti3+ Enhanced Photocatalyst for Hydrogen Production under Visible Light[J]. J Am Chem Soc, 2010,132(34):11856-11857. doi: 10.1021/ja103843d

    27. [27]

      Zou X X, Chen J S, Feng P Y. Facile Synthesis of Thermal-and Photostable Titania with Paramagnetic Oxygen Vacancies for Visible-Light Photocatalysis[J]. Chem Eur J, 2013,19(8):2866-2873. doi: 10.1002/chem.201202833

    28. [28]

      Kongkanand A, Kamat P V. Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor SWCNT Suspensions[J]. ACS Nano, 2007,1(1):13-21. doi: 10.1021/nn700036f

    29. [29]

      Kuznetsov A I, Kameneva O, Alexandrov A. Chemical Activity of Photoinduced Ti3+ Centers in Titanium Oxide Gels[J]. J Phys Chem B, 2006,110(1):435-441. doi: 10.1021/jp0559581

    30. [30]

      Kameneva O, Kuznestov A I, Smirnova L A. New Photoactive Hybrid Organic Inorganic Materials Based on Titanium-oxo-PHEMA Nanocomposites Exhibiting Mixed Valence Properties[J]. J Mater Chem, 2005,15(33):3380-3383. doi: 10.1039/b507305g

    31. [31]

      Kuznetsov A I, Kameneva O, Bityurin N. Laser-induced Photopatterning of Organic Inorganic TiO2-based Hybrid Materials with Tunable Interfacial Electron Transfer[J]. Phys Chem Chem Phys, 2009,11(8):1248-1257. doi: 10.1039/b814494j

    32. [32]

      Schrauben J N, Hayoun R, Valdez C N. Titanium and Zinc Oxide Nanoparticles are Proton-Coupled Electron Transfer Agents[J]. Science, 2012,336(6086):1298-1301. doi: 10.1126/science.1220234

    33. [33]

      Su J, Zou X X, Chen J S. Accelerated Room-temperature Crystallization of Ultrahigh-surface-area Porous Anatase Titania by Storing Photogenerated Electrons[J]. Chem Commun, 2017,53(10):1619-1621. doi: 10.1039/C6CC08892A

    34. [34]

      Li X, Chen N, Lin S. NiO-wrapped Mesoporous TiO2 Microspheres Based Selective Ammonia Sensor at Room Temperature[J]. Sens Actuators B, 2015,209:729-734. doi: 10.1016/j.snb.2014.12.031

    35. [35]

      Su J, Zou X X, Chen J S. Porous Titania with Heavily Self-doped Ti3+ for Specific Sensing of CO at Room Temperature[J]. Inorg Chem, 2013,52(10):5924-5930. doi: 10.1021/ic400109j

    36. [36]

      Lira E, Wendt S, Huo P. The Importance of Bulk Ti3+ Defects in the Oxygen Chemistry on Titania Surfaces[J]. J Am Chem Soc, 2011,133(17):6529-6532. doi: 10.1021/ja200884w

    37. [37]

      Zou X X, Li G D, Chen J S. Experimental Validation of the Importance of Thermally Stable Bulk ReductionStates in TiO2 for Gas Sensor Applications[J]. Acta Chim Sin, 2012,70:1477-1482. doi: 10.6023/A12030002

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    7. [7]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    10. [10]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    14. [14]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(23)
  • Abstract views(2239)
  • HTML views(341)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return