Citation: ZHAI Junfeng, YU Dengbin, LIU Ling, DONG Shaojun. Advance and Future Development of Mediator-Based Electrochemical Method Toward Water Total Toxicity[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1102-1106. doi: 10.11944/j.issn.1000-0518.2018.09.180136 shu

Advance and Future Development of Mediator-Based Electrochemical Method Toward Water Total Toxicity

  • Corresponding author: DONG Shaojun, dongsj@ciac.ac.cn
  • Received Date: 27 April 2018
    Revised Date: 28 April 2018
    Accepted Date: 2 May 2018

    Fund Project: Ministry of Science and Technology of China 2016YFA0203203Supported by the National Natural Science Foundation of China(No.21675151), Ministry of Science and Technology of China(No.2016YFA0203203)the National Natural Science Foundation of China 21675151

Figures(1)

  • The mediator-based electrochemical method is a sensitive and reliable one toward water total toxicity. The in-situ cultivated microorganism can be used as the test organisms, which endows the method high sensitivity to the changes in the total toxicity of the target water, thus enabling the method suitable for the evolution of the exact level of complex pollution of water and the design of early warning system of water quality. Here, the advance of the mediator-based electrochemical method toward water total toxicity is reviewed in term of mechanism of toxicity determination, the use of mediator and microorganism, and so on. Finally, a future perspective of the method is presented.
  • 加载中
    1. [1]

      Cho J C, Park K J, Ihm H S. A Novel Continuous Toxicity Test System Using a Luminously Modified Freshwater Bacterium[J]. Biosens Bioelectron, 2004,20(2):338-344. doi: 10.1016/j.bios.2004.02.001

    2. [2]

      Bock Gu M, Cheol Gil G. A Multi-Channel Continuous Toxicity Monitoring System Using Recombinant Bioluminescent Bacteria for Classification of Toxicity[J]. Biosens Bioelectron, 2001,16(9/12):661-666.  

    3. [3]

      Gu M B, Gil G C, Kim J H. A Two-Stage Minibioreactor System for Continuous Toxicity Monitoring[J]. Biosens Bioelectron, 1999,14(4):355-361. doi: 10.1016/S0956-5663(99)00017-2

    4. [4]

      Tizzard A, Webber J, Gooneratne R. MICREDOX:Application for Rapid Biotoxicity Assessment[J]. Anal Chim Acta, 2004,522(2):197-205. doi: 10.1016/j.aca.2004.05.010

    5. [5]

      ZHAI Junfeng, YU Dengbin, DONG Shaojun. An Online Equipment for Monitoring of Water Total Toxicity[J]. Chinese J Anal Chem, 2017,45(9):1415-1419.  

    6. [6]

      Fang D, Gao G, Shen J. A Reagentless Electrochemical Biosensor Based on Thionine Wrapped E-Coli and Chitosan-Entrapped Carbon Nanodots Film Modified Glassy Carbon Electrode for Wastewater Toxicity Assessment[J]. Electrochim Acta, 2016,222:303-311. doi: 10.1016/j.electacta.2016.10.174

    7. [7]

      Liu C, Sun T, Xu X. Direct Toxicity Assessment of Toxic Chemicals with Electrochemical Method[J]. Anal Chim Acta, 2009,641(1/2):59-63.  

    8. [8]

      Liu C, Sun T, Zhai Y. Evaluation of Ferricyanide Effects on Microorganisms with Multi-Methods[J]. Talanta, 2009,78(2):613-617. doi: 10.1016/j.talanta.2008.12.019

    9. [9]

      Yu D, Zhai J, Yong D. A Rapid and Sensitive p-Benzoquinone-mediated Bioassay for Determination of Heavy Metal Toxicity in Water[J]. Analyst, 2013,138(11):3297-3302. doi: 10.1039/c3an36907b

    10. [10]

      Wang X, Liu M, Wang X. P-Benzoquinone-Mediated Amperometric Biosensor Developed with Psychrobacter sp. for Toxicity Testing of Heavy Metals[J]. Biosens Bioelectron, 2013,41:557-562. doi: 10.1016/j.bios.2012.09.020

    11. [11]

      Pasco N F, Goonerate R, Daniel R M. Toxicity Assessment of Chlorophenols Using a Mediated Microbial Toxicity Assay[J]. Int J Environ Anal Chem, 2008,88(15):1063-1075. doi: 10.1080/03067310802248028

    12. [12]

      Zhao J, Wang Z, Wang M. The Interaction Mechanisms Between Saccharomyces Cerevisiae and Menadione and Its Application in Toxicology Study[J]. Talanta, 2008,74(5):1686-1691. doi: 10.1016/j.talanta.2007.10.024

    13. [13]

      Rawson F J, Downard A J, Baronian K H. Electrochemical Detection of Intracellular and Cell Membrane Redox Systems in Saccharomyces Cerevisiae[J]. Sci Rep, 2014,4(6)5216.  

    14. [14]

      Gao G, Fang D, Yu Y. A Double-Mediator Based Whole Cell Electrochemical Biosensor for Acute Biotoxicity Assessment of Wastewater[J]. Talanta, 2017,167:208-216. doi: 10.1016/j.talanta.2017.01.081

    15. [15]

      Wang M, Wang Z Q, Li S. Mediated Electrochemical Method for the Analysis of Membrane Damage Effects of Phenolic Compounds to Staphylococcus Aureus[J]. J Electroanal Chem, 2015,757:44-50. doi: 10.1016/j.jelechem.2015.09.007

    16. [16]

      Liu C, Yong D, Yu D. Cell-Based Biosensor for Measurement of Phenol and Nitrophenols Toxicity[J]. Talanta, 2011,84(3):766-770. doi: 10.1016/j.talanta.2011.02.006

    17. [17]

      Jordan M A, Welsh D T, Teasdale P R. A Ferricyanide-Mediated Activated Sludge Bioassay for Fast Determination of the Biochemical Oxygen Demand of Wastewaters[J]. Water Res, 2010,44(20):5981-5988. doi: 10.1016/j.watres.2010.07.042

    18. [18]

      Ma H P, Yong D M, Kim H J. A Ferricyanide-Mediated Activated Sludge Bioassay for Determination of the Toxicity of Water[J]. Electroanalysis, 2016,28(3):580-587. doi: 10.1002/elan.201500433

    19. [19]

      Yong D, Liu L, Yu D. Development of a Simple Method for Biotoxicity Measurement Using Ultramicroelectrode Array Under Non-Deaerated Condition[J]. Anal Chim Acta, 2011,701(2):164-168. doi: 10.1016/j.aca.2011.06.044

    20. [20]

      Li J M, Yu Y, Qian J. A Novel Integrated Biosensor Based on Co-Immobilizing the Mediator and Microorganism for Water Biotoxicity Assay[J]. Analyst, 2014,139(11):2806-2812. doi: 10.1039/C4AN00243A

    21. [21]

      Teitzel G M, Parsek M R. Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas aeruginosa[J]. Appl Environ Microbiol, 2003,69(4):2313-2320. doi: 10.1128/AEM.69.4.2313-2320.2003

    22. [22]

      Harrison J J, Ceri H, Stremick C A. Biofilm Susceptibility to Metal Toxicity[J]. Environ Microbiol, 2004,6(12):1220-1227. doi: 10.1111/emi.2004.6.issue-12

    23. [23]

      Ricco G, Tomei M C, Ramadori R. Toxicity Assessment of Common Xenobiotic Compounds on Municipal Activated Sludge:Comparison Between Respirometry and Microtox[J]. Water Res, 2004,38(8):2103-2110. doi: 10.1016/j.watres.2004.01.020

    24. [24]

      Gao G Y, Qian J, Fang D Y. Development of a Mediated Whole Cell-Based Electrochemical Biosensor for Joint Toxicity Assessment of Multi-Pollutants Using a Mixed Microbial Consortium[J]. Anal Chim Acta, 2016,924:21-28. doi: 10.1016/j.aca.2016.04.011

    25. [25]

      Qian J, Li J M, Fang D Y. A Disposable Biofilm-Modified Amperometric Biosensor for the Sensitive Determination of Pesticide Biotoxicity in Water[J]. RSC Adv, 2014,4(98):55473-55482. doi: 10.1039/C4RA08468C

    26. [26]

      Wang H, Wang X J, Zhao J F. Toxicity Assessment of Heavy Metals and Organic Compounds Using Cell Sense Biosensor with E.Coli[J]. Chinese Chem Lett, 2008,19(2):211-214. doi: 10.1016/j.cclet.2007.10.053

    27. [27]

      Catterall K, Robertson D, Hudson S. A Sensitive, Rapid Ferricyanide-Mediated Toxicity Bioassay Developed Using Escherichia Coli[J]. Talanta, 2010,82(2):751-757. doi: 10.1016/j.talanta.2010.05.046

    28. [28]

      Yong D, Liu C, Yu D. A Sensitive, Rapid and Inexpensive Way to Assay Pesticide Toxicity Based on Electrochemical Biosensor[J]. Talanta, 2011,84(1):7-12. doi: 10.1016/j.talanta.2010.11.012

    29. [29]

      Yang Y, Fang D, Liu Y. Problems Analysis and New Fabrication Strategies of Mediated Electrochemical Biosensors for Wastewater Toxicity Assessment[J]. Biosens Bioelectron, 2018,108:82-88. doi: 10.1016/j.bios.2018.02.049

  • 加载中
    1. [1]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    2. [2]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    3. [3]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    4. [4]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    7. [7]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    17. [17]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    18. [18]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    19. [19]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(0)
  • Abstract views(763)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return