Applications of Graphdiyne in Li+/Na+ Battery Anodes
- Corresponding author: LI Yuliang, ylli@iccas.ac.cn
Citation:
ZUO Zicheng, LI Yuliang. Applications of Graphdiyne in Li+/Na+ Battery Anodes[J]. Chinese Journal of Applied Chemistry,
;2018, 35(9): 1057-1066.
doi:
10.11944/j.issn.1000-0518.2018.09.180117
Georgakilas V, Perman J A, Tucek J. Broad Family of Carbon Nanoallotropes:Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures[J]. Chem Rev, 2015,115(11):4744-4822. doi: 10.1021/cr500304f
Dai L. Functionalization of Graphene for Efficient Energy Conversion and Storage[J]. Acc Chem Res, 2013,46(1):31-42. doi: 10.1021/ar300122m
Wassei J K, Kaner R B. Oh, the Places You'll Go with Graphene[J]. Acc Chem Res, 2013,46(10):2244-2253. doi: 10.1021/ar300184v
Englert J M, Dotzer C, Yang G A. Covalent Bulk Functionalization of Graphene[J]. Nat Chem, 2011,3(4):279-286. doi: 10.1038/nchem.1010
Xin S, Guo Y G, Wan L J. Nanocarbon Networks for Advanced Rechargeable Lithium Batteries[J]. Acc Chem Res, 2012,45(10):1759-1769. doi: 10.1021/ar300094m
Choi N S, Chen Z, Freunberger S A. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors[J]. Angew Chem Int Ed, 2012,51(40):9994-10024. doi: 10.1002/anie.201201429
Lin F, Liu Y, Yu X. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries[J]. Chem Rev, 2017,117(21):13123-13186. doi: 10.1021/acs.chemrev.7b00007
Li X S, Cai W W, An J H. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J]. Science, 2009,324(5932):1312-1314. doi: 10.1126/science.1171245
Hong G, Zhang B, Peng B. Direct Growth of Semiconducting Single-Walled Carbon Nanotube Array[J]. J Am Chem Soc, 2009,131(41):14642-14643. doi: 10.1021/ja9068529
Kroto H W, Heath J R, O'Brien S C. C60 Buckminsterfullerence[J]. Nature, 1985,318:162-163. doi: 10.1038/318162a0
Li G, Li Y, Liu H. Architecture of Graphdiyne Nanoscale Films[J]. Chem Commun, 2010,46(19):3256-3258. doi: 10.1039/b922733d
Li Y, Li Y. Two Dimensional Polymers-Progress of Full Carbon Graphyne[J]. Acta Polym Sin, 2015,2:147-165.
Chen Y, Liu H, Li Y. Progress and Prospect of Two Dimensional Carbon Graphdiyne[J]. Chinese Sci Bull, 2016,61(26):2901-2912.
HUANG Yanmin, YUAN Mingjian, LI Yuliang. Two-Dimensional Semiconducting Materials and Devices:From Traditional Two-Dimensional Optoelectronic Materials to Graphdiyne[J]. Chinese J Inorg Chem, 2017,33(11):1914-1936. doi: 10.11862/CJIC.2017.265
Li Y. Design and Self-Assembly of Advanced Functional Molecular Materials-From Low Dimension to Multi-Dimension[J]. Sci Sin Chim, 2017,47(47):1045-1056.
Huang C, Li Y. Structure of 2D Graphdiyne and Its Application in Energy Fields[J]. Acta Phys Chim Sin, 2016,32(6):1314-1329.
Li Y, Xu L, Liu H. Graphdiyne and Graphyne:From Theoretical Predictions to Practical Construction[J]. Chem Soc Rev, 2014,43(8):2572-2586. doi: 10.1039/c3cs60388a
LI Yongjun, LI Yuliang. Two Dimensional Polymers-Progress of Full Carbon Graphyne[J]. Acta Polym Sin, 2015(2):147-165.
Lu C, Yang Y, Wang J. High-performance Graphdiyne-Based Electrochemical Actuators[J]. Nat Commun, 2018,9(1)752. doi: 10.1038/s41467-018-03095-1
Siemsen P, Livingston R C, Diederich F. Acetylenic Coupling:A Powerful Tool in Molecular Construction[J]. Angew Chem Int Ed, 2000,39(15):2632-2657. doi: 10.1002/(ISSN)1521-3773
Diederich F. Carbon Scaffolding:Building Acetylenic All-Carbon and Carbon-Rich Compounds[J]. Nature, 1994,369(6477):199-207. doi: 10.1038/369199a0
Xue Y, Guo Y, Yi Y. Self-catalyzed Growth of Cu@Graphdiyne Core-Shell Nanowires Array for High Efficient Hydrogen Evolution Cathode[J]. Nano Energy, 2016,30:858-866. doi: 10.1016/j.nanoen.2016.09.005
Xue Y, Zuo Z, Li Y. Graphdiyne-Supported NiCo2S4 Nanowires:A Highly Active and Stable 3D Bifunctional Electrode Material[J]. Small, 2017,13(31)1700936. doi: 10.1002/smll.v13.31
Wang S, Yi L X, Halpert J E. A Novel and Highly Efficient Photocatalyst Based on P25-Graphdiyne Nanocomposite[J]. Small, 2012,8(2):265-271. doi: 10.1002/smll.201101686
Xue, Li, X, Z. Extraordinarily Durable Graphdiyne-Supported Electrocatalyst with High Activity for Hydrogen Production at All Values of pH[J]. ACS Appl Mater Interfaces, 2016,8(45):31083-31091. doi: 10.1021/acsami.6b12655
Long M, Tang L, Wang D. Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons:Theoretical Predictions[J]. ACS Nano, 2011,5(4):2593-2600. doi: 10.1021/nn102472s
Chen J, Xi J, Wang D. Carrier Mobility in Graphyne Should be Even Larger than That in Graphene:A Theoretical Prediction[J]. J Phys Chem Lett, 2013,4(9):1443-1448. doi: 10.1021/jz4005587
Yang N L, Liu Y Y, Wen H. Photocatalytic Properties of Graphdiyne and Graphene Modified TiO2:From Theory to Experiment[J]. ACS Nano, 2013,7(2):1504-1512. doi: 10.1021/nn305288z
Xiao J, Shi J, Liu H. Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)-Modified P3HT Hole-Transporting Material[J]. Adv Energy Mater, 2015,5(8)1401943. doi: 10.1002/aenm.201401943
Gao X, Li J, Du R. Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell[J]. Adv Mater, 2017,29(9)1605308. doi: 10.1002/adma.201605308
Ren H, Shao H, Zhang L. A New Graphdiyne Nanosheet/Pt Nanoparticle-Based Counter Electrode Material with Enhanced Catalytic Activity for Dye-Sensitized Solar Cells[J]. Adv Energy Mater, 2015,5(12)1500296. doi: 10.1002/aenm.201500296
Yue Q, Chang S, Kang J. Mechanical and Electronic Properties of Graphyne and Its Family under Elastic Strain:Theoretical Predictions[J]. J Phys Chem C, 2013,117(28):14804-14811. doi: 10.1021/jp4021189
Wu B, Li M R, Xiao S N. A Graphyne-Like Porous Carbon-Rich Network Synthesized via Alkyne Metathesis[J]. Nanoscale, 2017,9(33):11939-11943. doi: 10.1039/C7NR02247F
Gao J, Li J, Chen Y. Architecture and Properties of a Novel Two-Dimensional Carbon Material-Graphtetrayne[J]. Nano Energy, 2018,43:192-199. doi: 10.1016/j.nanoen.2017.11.005
Li G, Li Y, Qian X. Construction of Tubular Molecule Aggregations of Graphdiyne for Highly Efficient Field Emission[J]. J Phys Chem C, 2011,115(6):2611-2615. doi: 10.1021/jp107996f
Kang J, Li J, Wu F. Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet[J]. J Phys Chem C, 2011,115(42):20466-20470. doi: 10.1021/jp206751m
Peng Q, Ji W, De S. Mechanical Properties of Graphyne Monolayers:A First-Principles Study[J]. Phys Chem Chem Phys, 2012,14(38):13385-13391. doi: 10.1039/c2cp42387a
Degabriele E P, Grima-Cornish J N, Attard D. On the Mechanical Properties of Graphyne, Graphdiyne, and Other Poly(phenylacetylene) Networks[J]. Phys Status Solidi B, 2017,254(9)1700380.
Yang Y, Xu X. Mechanical Properties of Graphyne and Its Family-A Molecular Dynamics Investigation[J]. Comput Mater Sci, 2012,61:83-88. doi: 10.1016/j.commatsci.2012.03.052
Xu Z, Lv X, Li J. A Promising Anode Material for Sodium-Ion Battery with High Capacity and High Diffusion Ability:Graphyne and Graphdiyne[J]. RSC Adv, 2016,6(30):25594-25600. doi: 10.1039/C6RA01870J
Farokh Niaei A H, Hussain T, Hankel M. Sodium-intercalated Bulk Graphdiyne as an Anode Material for Rechargeable Batteries[J]. J Power Sources, 2017,343:354-363. doi: 10.1016/j.jpowsour.2017.01.027
Zhang H, Xia Y, Bu H. Graphdiyne:A Promising Anode Material for Lithium Ion Batteries with High Capacity and Rate Capability[J]. J Appl Phys, 2013,113(4)044309. doi: 10.1063/1.4789635
Chandra Shekar S, Swathi R S. Rattling Motion of Alkali Metal Ions Through the Cavities of Model Compounds of Graphyne and Graphdiyne[J]. J Phy Chem A, 2013,117(36):8632-8641. doi: 10.1021/jp402896v
Shekar S C, Swathi R S. Cation-π Interactions and Rattling Motion Through Two-Dimensional Carbon Networks:Graphene vs Graphynes[J]. J Phys Chem C, 2015,119(16):8912-8923. doi: 10.1021/jp512593r
Sun C, Searles D J. Lithium Storage on Graphdiyne Predicted by DFT Calculations[J]. J Phys Chem C, 2012,116(50):26222-26226. doi: 10.1021/jp309638z
Li C, Lu X, Han Y. Direct Imaging and Determination of the Crystal Structure of Six-Layered Graphdiyne[J]. Nano Res, 2018,11(3):1714-1721. doi: 10.1007/s12274-017-1789-7
Matsuoka R, Sakamoto R, Hoshiko K. Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface[J]. J Am Chem Soc, 2017,139(8):3145-3152. doi: 10.1021/jacs.6b12776
Kan X, Ban Y, Wu C. Interfacial Synthesis of Conjugated Two-Dimensional N-Graphdiyne[J]. ACS Appl Mater Interfaces, 2018,10(1):53-58. doi: 10.1021/acsami.7b17326
Zhang H, Zhao M, He X. High Mobility and High Storage Capacity of Lithium in sp-sp2 Hybridized Carbon Network:The Case of Graphyne[J]. J Phys Chem C, 2011,115(17):8845-8850. doi: 10.1021/jp201062m
Zhou J, Gao X, Liu R. Synthesis of Graphdiyne Nanowalls Using Acetylenic Coupling Reaction[J]. J Am Chem Soc, 2015,137(24):7596-7599. doi: 10.1021/jacs.5b04057
Matsuoka R, Toyoda R, Shiotsuki R. Expansion of the Graphdiyne Family:A Triphenylene-Cored Analogue[J]. ACS Appl Mater Interfaces, 2018. doi: 10.1021/acsami.8b00743
Li J, Xiong Y, Xie Z. Template Synthesis of an Ultrathin beta-Graphdiyne-Like Film Using the Eglinton Coupling Reaction[J]. ACS Appl Mater Interfaces, 2018. doi: 10.1021/acsami.8b03028
Zhou J, Xie Z, Liu R. Synthesis of Ultrathin Graphdiyne Film Using a Surface Template[J]. ACS Appl Mater Interfaces, 2018,10.
Liu R, Gao X, Zhou J. Chemical Vapor Deposition Growth of Linked Carbon Monolayers with Acetylenic Scaffoldings on Silver Foil[J]. Adv Mater, 2017,29(18)1604665. doi: 10.1002/adma.201604665
Qian X, Liu H, Huang C. Self-catalyzed Growth of Large-Area Nanofilms of Two-Dimensional Carbon[J]. Sci Rep, 2015,57756. doi: 10.1038/srep07756
Zhang Y Q, Kepcija N, Kleinschrodt M. Homo-coupling of Terminal Alkynes on a Noble Metal Surface[J]. Nat Commun, 2012,31286. doi: 10.1038/ncomms2291
Sun Q, Yu X, Bao M. Direct Formation of C-C Triple Bonded Structural Motifs by On-Surface Dehalogenative Homocoupling of Tribromomethyl Molecules[J]. Angew Chem Int Ed, 2018,57(15):4035-4038. doi: 10.1002/anie.201801056
Shang H, Zuo Z, Zheng H. N-Doped Graphdiyne for High-Performance Electrochemical Electrodes[J]. Nano Energy, 2018,44:144-154. doi: 10.1016/j.nanoen.2017.11.072
Zuo Z, Shang H, Chen Y. A Facile Approach for Graphdiyne Preparation under Atmosphere for an Advanced Battery Anode[J]. Chem Commun, 2017,53(57):8074-8077. doi: 10.1039/C7CC03200E
Wang F, Zuo Z, Shang H. Ultrafastly Interweaving Graphdiyne Nanochain on Arbitrary Substrates and Its Performance as a Supercapacitor Electrode[J]. ACS Appl Mater Interfaces, 2018. doi: 10.1021/acsami.8b01383
Huang C, Zhang S, Liu H. Graphdiyne for High Capacity and Long-Life Lithium Storage[J]. Nano Energy, 2015,11:481-489. doi: 10.1016/j.nanoen.2014.11.036
Zhang S, Liu H, Huang C. Bulk Graphdiyne Powder Applied for Highly Efficient Lithium Storage[J]. Chem Commun, 2015,51(10):1834-1837.
Wang K, Wang N, He J. Graphdiyne Nanowalls as Anode for Lithium-Ion Batteries and Capacitors Exhibit Superior Cyclic Stability[J]. Electrochim Acta, 2017,253:506-516. doi: 10.1016/j.electacta.2017.09.101
Wang K, Wang N, He J. Preparation of 3D Architecture Graphdiyne Nanosheets for High-Performance Sodium-Ion Batteries and Capacitors[J]. ACS Appl Mater Interfaces, 2017,9(46):40604-40613. doi: 10.1021/acsami.7b11420
Shang H, Zuo Z, Li L. Ultrathin Graphdiyne Nanosheets Grown in Situ on Copper Nanowires and Their Performance as Lithium-Ion Battery Anodes[J]. Angew Chem Int Ed, 2018,57(3):774-778. doi: 10.1002/anie.201711366
Zhang S, Du H, He J. Nitrogen-Doped Graphdiyne Applied for Lithium-Ion Storage[J]. ACS Appl Mater Interfaces, 2016,8(13):8467-8473. doi: 10.1021/acsami.6b00255
Lv Q, Si W Y, Yang Z. Nitrogen-Doped Porous Graphdiyne:A Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction[J]. ACS Appl Mater Interfaces, 2017,9(35):29744-29752. doi: 10.1021/acsami.7b08115
Zhang S S, Cai Y J, He H Y. Heteroatom Doped Graphdiyne as Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium[J]. J Mater Chem A, 2016,4(13):4738-4744. doi: 10.1039/C5TA10579J
Liu R, Liu H, Li Y. Nitrogen-doped Graphdiyne as a Metal-Free Catalyst for High-Performance Oxygen Reduction Reactions[J]. Nanoscale, 2014,6(19):11336-11343. doi: 10.1039/C4NR03185G
He J, Wang N, Cui Z. Hydrogen Substituted Graphdiyne as Carbon-Rich Flexible Electrode for Lithium and Sodium Ion Batteries[J]. Nat Commun, 2017,8(1)1172. doi: 10.1038/s41467-017-01202-2
Du R, Zhang N, Xu H. CMP Aerogels:Ultrahigh-Surface-Area Carbon-Based Monolithic Materials with Superb Sorption Performance[J]. Adv Mater, 2014,26(47):8053-8058. doi: 10.1002/adma.v26.47
Wang N, He J, Tu Z. Synthesis of Chlorine-Substituted Graphdiyne and Applications for Lithium-Ion Storage[J]. Angew Chem Inter Ed, 2017,56(36):10740-10745. doi: 10.1002/anie.201704779
Wang N, Li X, Tu Z. Synthesis and Electronic Structure of Boron-Graphdiyne with an sp-Hybridized Carbon Skeleton and Its Application in Sodium Storage[J]. Angew Chem Int Ed, 2018,57(15):3968-3973. doi: 10.1002/anie.201800453
Yang Z, Shen X, Wang N. Graphdiyne Containing Atomically Precise N Atoms for Efficient Anchoring of Lithium Ion[J]. ACS Appl Mater Interfaces, 2018. doi: 10.1021/acsami.8b01823
Jia Z, Zuo Z, Yi Y. Low Temperature, Atmospheric Pressure for Synthesis of a New Carbon Ene-yne and Application in Li Storage[J]. Nano Energy, 2017,33:343-349. doi: 10.1016/j.nanoen.2017.01.049
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042