Citation: ZUO Zicheng, LI Yuliang. Applications of Graphdiyne in Li+/Na+ Battery Anodes[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1057-1066. doi: 10.11944/j.issn.1000-0518.2018.09.180117 shu

Applications of Graphdiyne in Li+/Na+ Battery Anodes

  • Corresponding author: LI Yuliang, ylli@iccas.ac.cn
  • Received Date: 16 April 2018
    Revised Date: 27 April 2018
    Accepted Date: 28 April 2018

    Fund Project: the National Natural Science Foundation of China 21790051Supported by the National Natural Science Foundation of China(No.21790050, No.21790051), the National Key Research and Development Project of China(No.2016YFA0200104), Key Research Program of Frontier Sciences of Chinese Academy of Sciences(No.QYZDY-SSW-SLH015)Key Research Program of Frontier Sciences of Chinese Academy of Sciences QYZDY-SSW-SLH015the National Key Research and Development Project of China 2016YFA0200104the National Natural Science Foundation of China 21790050

Figures(6)

  • Two-dimensional graphdiyne has received widely attentions due to its outstanding physical and chemical properties. Many remarkable progresses of graphdiyne in the theories, preparations, and applications have been received in recent years. Based on its native particularities in the preparations and molecular structure, graphdiyne has already shown many promises in the traditional research areas, and brought important impacts in some new research directions, demonstrating that the graphdiyne has gradually become a hot research field. Its applications in electrochemical energy storage have received more and more attentions. This paper describes the original advantages of graphdiyne in the electrochemical energy storages, summarizes the developments in preparations, and mainly discusses the expansion of graphdiyne family via low-temperature synthesis and their electrochemical behaviors in storing the lithium/sodium ions.
  • 加载中
    1. [1]

      Georgakilas V, Perman J A, Tucek J. Broad Family of Carbon Nanoallotropes:Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures[J]. Chem Rev, 2015,115(11):4744-4822. doi: 10.1021/cr500304f

    2. [2]

      Dai L. Functionalization of Graphene for Efficient Energy Conversion and Storage[J]. Acc Chem Res, 2013,46(1):31-42. doi: 10.1021/ar300122m

    3. [3]

      Wassei J K, Kaner R B. Oh, the Places You'll Go with Graphene[J]. Acc Chem Res, 2013,46(10):2244-2253. doi: 10.1021/ar300184v

    4. [4]

      Englert J M, Dotzer C, Yang G A. Covalent Bulk Functionalization of Graphene[J]. Nat Chem, 2011,3(4):279-286. doi: 10.1038/nchem.1010

    5. [5]

      Xin S, Guo Y G, Wan L J. Nanocarbon Networks for Advanced Rechargeable Lithium Batteries[J]. Acc Chem Res, 2012,45(10):1759-1769. doi: 10.1021/ar300094m

    6. [6]

      Choi N S, Chen Z, Freunberger S A. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors[J]. Angew Chem Int Ed, 2012,51(40):9994-10024. doi: 10.1002/anie.201201429

    7. [7]

      Lin F, Liu Y, Yu X. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries[J]. Chem Rev, 2017,117(21):13123-13186. doi: 10.1021/acs.chemrev.7b00007

    8. [8]

      Li X S, Cai W W, An J H. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J]. Science, 2009,324(5932):1312-1314. doi: 10.1126/science.1171245

    9. [9]

      Hong G, Zhang B, Peng B. Direct Growth of Semiconducting Single-Walled Carbon Nanotube Array[J]. J Am Chem Soc, 2009,131(41):14642-14643. doi: 10.1021/ja9068529

    10. [10]

      Kroto H W, Heath J R, O'Brien S C. C60 Buckminsterfullerence[J]. Nature, 1985,318:162-163. doi: 10.1038/318162a0

    11. [11]

      Li G, Li Y, Liu H. Architecture of Graphdiyne Nanoscale Films[J]. Chem Commun, 2010,46(19):3256-3258. doi: 10.1039/b922733d

    12. [12]

      Li Y, Li Y. Two Dimensional Polymers-Progress of Full Carbon Graphyne[J]. Acta Polym Sin, 2015,2:147-165.  

    13. [13]

      Chen Y, Liu H, Li Y. Progress and Prospect of Two Dimensional Carbon Graphdiyne[J]. Chinese Sci Bull, 2016,61(26):2901-2912.  

    14. [14]

      HUANG Yanmin, YUAN Mingjian, LI Yuliang. Two-Dimensional Semiconducting Materials and Devices:From Traditional Two-Dimensional Optoelectronic Materials to Graphdiyne[J]. Chinese J Inorg Chem, 2017,33(11):1914-1936. doi: 10.11862/CJIC.2017.265 

    15. [15]

      Li Y. Design and Self-Assembly of Advanced Functional Molecular Materials-From Low Dimension to Multi-Dimension[J]. Sci Sin Chim, 2017,47(47):1045-1056.  

    16. [16]

      Huang C, Li Y. Structure of 2D Graphdiyne and Its Application in Energy Fields[J]. Acta Phys Chim Sin, 2016,32(6):1314-1329.  

    17. [17]

      Li Y, Xu L, Liu H. Graphdiyne and Graphyne:From Theoretical Predictions to Practical Construction[J]. Chem Soc Rev, 2014,43(8):2572-2586. doi: 10.1039/c3cs60388a

    18. [18]

      LI Yongjun, LI Yuliang. Two Dimensional Polymers-Progress of Full Carbon Graphyne[J]. Acta Polym Sin, 2015(2):147-165.  

    19. [19]

      Lu C, Yang Y, Wang J. High-performance Graphdiyne-Based Electrochemical Actuators[J]. Nat Commun, 2018,9(1)752. doi: 10.1038/s41467-018-03095-1

    20. [20]

      Siemsen P, Livingston R C, Diederich F. Acetylenic Coupling:A Powerful Tool in Molecular Construction[J]. Angew Chem Int Ed, 2000,39(15):2632-2657. doi: 10.1002/(ISSN)1521-3773

    21. [21]

      Diederich F. Carbon Scaffolding:Building Acetylenic All-Carbon and Carbon-Rich Compounds[J]. Nature, 1994,369(6477):199-207. doi: 10.1038/369199a0

    22. [22]

      Xue Y, Guo Y, Yi Y. Self-catalyzed Growth of Cu@Graphdiyne Core-Shell Nanowires Array for High Efficient Hydrogen Evolution Cathode[J]. Nano Energy, 2016,30:858-866. doi: 10.1016/j.nanoen.2016.09.005

    23. [23]

      Xue Y, Zuo Z, Li Y. Graphdiyne-Supported NiCo2S4 Nanowires:A Highly Active and Stable 3D Bifunctional Electrode Material[J]. Small, 2017,13(31)1700936. doi: 10.1002/smll.v13.31

    24. [24]

      Wang S, Yi L X, Halpert J E. A Novel and Highly Efficient Photocatalyst Based on P25-Graphdiyne Nanocomposite[J]. Small, 2012,8(2):265-271. doi: 10.1002/smll.201101686

    25. [25]

      Xue, Li, X, Z. Extraordinarily Durable Graphdiyne-Supported Electrocatalyst with High Activity for Hydrogen Production at All Values of pH[J]. ACS Appl Mater Interfaces, 2016,8(45):31083-31091. doi: 10.1021/acsami.6b12655

    26. [26]

      Long M, Tang L, Wang D. Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons:Theoretical Predictions[J]. ACS Nano, 2011,5(4):2593-2600. doi: 10.1021/nn102472s

    27. [27]

      Chen J, Xi J, Wang D. Carrier Mobility in Graphyne Should be Even Larger than That in Graphene:A Theoretical Prediction[J]. J Phys Chem Lett, 2013,4(9):1443-1448. doi: 10.1021/jz4005587

    28. [28]

      Yang N L, Liu Y Y, Wen H. Photocatalytic Properties of Graphdiyne and Graphene Modified TiO2:From Theory to Experiment[J]. ACS Nano, 2013,7(2):1504-1512. doi: 10.1021/nn305288z

    29. [29]

      Xiao J, Shi J, Liu H. Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)-Modified P3HT Hole-Transporting Material[J]. Adv Energy Mater, 2015,5(8)1401943. doi: 10.1002/aenm.201401943

    30. [30]

      Gao X, Li J, Du R. Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell[J]. Adv Mater, 2017,29(9)1605308. doi: 10.1002/adma.201605308

    31. [31]

      Ren H, Shao H, Zhang L. A New Graphdiyne Nanosheet/Pt Nanoparticle-Based Counter Electrode Material with Enhanced Catalytic Activity for Dye-Sensitized Solar Cells[J]. Adv Energy Mater, 2015,5(12)1500296. doi: 10.1002/aenm.201500296

    32. [32]

      Yue Q, Chang S, Kang J. Mechanical and Electronic Properties of Graphyne and Its Family under Elastic Strain:Theoretical Predictions[J]. J Phys Chem C, 2013,117(28):14804-14811. doi: 10.1021/jp4021189

    33. [33]

      Wu B, Li M R, Xiao S N. A Graphyne-Like Porous Carbon-Rich Network Synthesized via Alkyne Metathesis[J]. Nanoscale, 2017,9(33):11939-11943. doi: 10.1039/C7NR02247F

    34. [34]

      Gao J, Li J, Chen Y. Architecture and Properties of a Novel Two-Dimensional Carbon Material-Graphtetrayne[J]. Nano Energy, 2018,43:192-199. doi: 10.1016/j.nanoen.2017.11.005

    35. [35]

      Li G, Li Y, Qian X. Construction of Tubular Molecule Aggregations of Graphdiyne for Highly Efficient Field Emission[J]. J Phys Chem C, 2011,115(6):2611-2615. doi: 10.1021/jp107996f

    36. [36]

      Kang J, Li J, Wu F. Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet[J]. J Phys Chem C, 2011,115(42):20466-20470. doi: 10.1021/jp206751m

    37. [37]

      Peng Q, Ji W, De S. Mechanical Properties of Graphyne Monolayers:A First-Principles Study[J]. Phys Chem Chem Phys, 2012,14(38):13385-13391. doi: 10.1039/c2cp42387a

    38. [38]

      Degabriele E P, Grima-Cornish J N, Attard D. On the Mechanical Properties of Graphyne, Graphdiyne, and Other Poly(phenylacetylene) Networks[J]. Phys Status Solidi B, 2017,254(9)1700380.  

    39. [39]

      Yang Y, Xu X. Mechanical Properties of Graphyne and Its Family-A Molecular Dynamics Investigation[J]. Comput Mater Sci, 2012,61:83-88. doi: 10.1016/j.commatsci.2012.03.052

    40. [40]

      Xu Z, Lv X, Li J. A Promising Anode Material for Sodium-Ion Battery with High Capacity and High Diffusion Ability:Graphyne and Graphdiyne[J]. RSC Adv, 2016,6(30):25594-25600. doi: 10.1039/C6RA01870J

    41. [41]

      Farokh Niaei A H, Hussain T, Hankel M. Sodium-intercalated Bulk Graphdiyne as an Anode Material for Rechargeable Batteries[J]. J Power Sources, 2017,343:354-363. doi: 10.1016/j.jpowsour.2017.01.027

    42. [42]

      Zhang H, Xia Y, Bu H. Graphdiyne:A Promising Anode Material for Lithium Ion Batteries with High Capacity and Rate Capability[J]. J Appl Phys, 2013,113(4)044309. doi: 10.1063/1.4789635

    43. [43]

      Chandra Shekar S, Swathi R S. Rattling Motion of Alkali Metal Ions Through the Cavities of Model Compounds of Graphyne and Graphdiyne[J]. J Phy Chem A, 2013,117(36):8632-8641. doi: 10.1021/jp402896v

    44. [44]

      Shekar S C, Swathi R S. Cation-π Interactions and Rattling Motion Through Two-Dimensional Carbon Networks:Graphene vs Graphynes[J]. J Phys Chem C, 2015,119(16):8912-8923. doi: 10.1021/jp512593r

    45. [45]

      Sun C, Searles D J. Lithium Storage on Graphdiyne Predicted by DFT Calculations[J]. J Phys Chem C, 2012,116(50):26222-26226. doi: 10.1021/jp309638z

    46. [46]

      Li C, Lu X, Han Y. Direct Imaging and Determination of the Crystal Structure of Six-Layered Graphdiyne[J]. Nano Res, 2018,11(3):1714-1721. doi: 10.1007/s12274-017-1789-7

    47. [47]

      Matsuoka R, Sakamoto R, Hoshiko K. Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface[J]. J Am Chem Soc, 2017,139(8):3145-3152. doi: 10.1021/jacs.6b12776

    48. [48]

      Kan X, Ban Y, Wu C. Interfacial Synthesis of Conjugated Two-Dimensional N-Graphdiyne[J]. ACS Appl Mater Interfaces, 2018,10(1):53-58. doi: 10.1021/acsami.7b17326

    49. [49]

      Zhang H, Zhao M, He X. High Mobility and High Storage Capacity of Lithium in sp-sp2 Hybridized Carbon Network:The Case of Graphyne[J]. J Phys Chem C, 2011,115(17):8845-8850. doi: 10.1021/jp201062m

    50. [50]

      Zhou J, Gao X, Liu R. Synthesis of Graphdiyne Nanowalls Using Acetylenic Coupling Reaction[J]. J Am Chem Soc, 2015,137(24):7596-7599. doi: 10.1021/jacs.5b04057

    51. [51]

      Matsuoka R, Toyoda R, Shiotsuki R. Expansion of the Graphdiyne Family:A Triphenylene-Cored Analogue[J]. ACS Appl Mater Interfaces, 2018. doi: 10.1021/acsami.8b00743

    52. [52]

      Li J, Xiong Y, Xie Z. Template Synthesis of an Ultrathin beta-Graphdiyne-Like Film Using the Eglinton Coupling Reaction[J]. ACS Appl Mater Interfaces, 2018. doi: 10.1021/acsami.8b03028

    53. [53]

      Zhou J, Xie Z, Liu R. Synthesis of Ultrathin Graphdiyne Film Using a Surface Template[J]. ACS Appl Mater Interfaces, 2018,10.  

    54. [54]

      Liu R, Gao X, Zhou J. Chemical Vapor Deposition Growth of Linked Carbon Monolayers with Acetylenic Scaffoldings on Silver Foil[J]. Adv Mater, 2017,29(18)1604665. doi: 10.1002/adma.201604665

    55. [55]

      Qian X, Liu H, Huang C. Self-catalyzed Growth of Large-Area Nanofilms of Two-Dimensional Carbon[J]. Sci Rep, 2015,57756. doi: 10.1038/srep07756

    56. [56]

      Zhang Y Q, Kepcija N, Kleinschrodt M. Homo-coupling of Terminal Alkynes on a Noble Metal Surface[J]. Nat Commun, 2012,31286. doi: 10.1038/ncomms2291

    57. [57]

      Sun Q, Yu X, Bao M. Direct Formation of C-C Triple Bonded Structural Motifs by On-Surface Dehalogenative Homocoupling of Tribromomethyl Molecules[J]. Angew Chem Int Ed, 2018,57(15):4035-4038. doi: 10.1002/anie.201801056

    58. [58]

      Shang H, Zuo Z, Zheng H. N-Doped Graphdiyne for High-Performance Electrochemical Electrodes[J]. Nano Energy, 2018,44:144-154. doi: 10.1016/j.nanoen.2017.11.072

    59. [59]

      Zuo Z, Shang H, Chen Y. A Facile Approach for Graphdiyne Preparation under Atmosphere for an Advanced Battery Anode[J]. Chem Commun, 2017,53(57):8074-8077. doi: 10.1039/C7CC03200E

    60. [60]

      Wang F, Zuo Z, Shang H. Ultrafastly Interweaving Graphdiyne Nanochain on Arbitrary Substrates and Its Performance as a Supercapacitor Electrode[J]. ACS Appl Mater Interfaces, 2018. doi: 10.1021/acsami.8b01383

    61. [61]

      Huang C, Zhang S, Liu H. Graphdiyne for High Capacity and Long-Life Lithium Storage[J]. Nano Energy, 2015,11:481-489. doi: 10.1016/j.nanoen.2014.11.036

    62. [62]

      Zhang S, Liu H, Huang C. Bulk Graphdiyne Powder Applied for Highly Efficient Lithium Storage[J]. Chem Commun, 2015,51(10):1834-1837.  

    63. [63]

      Wang K, Wang N, He J. Graphdiyne Nanowalls as Anode for Lithium-Ion Batteries and Capacitors Exhibit Superior Cyclic Stability[J]. Electrochim Acta, 2017,253:506-516. doi: 10.1016/j.electacta.2017.09.101

    64. [64]

      Wang K, Wang N, He J. Preparation of 3D Architecture Graphdiyne Nanosheets for High-Performance Sodium-Ion Batteries and Capacitors[J]. ACS Appl Mater Interfaces, 2017,9(46):40604-40613. doi: 10.1021/acsami.7b11420

    65. [65]

      Shang H, Zuo Z, Li L. Ultrathin Graphdiyne Nanosheets Grown in Situ on Copper Nanowires and Their Performance as Lithium-Ion Battery Anodes[J]. Angew Chem Int Ed, 2018,57(3):774-778. doi: 10.1002/anie.201711366

    66. [66]

      Zhang S, Du H, He J. Nitrogen-Doped Graphdiyne Applied for Lithium-Ion Storage[J]. ACS Appl Mater Interfaces, 2016,8(13):8467-8473. doi: 10.1021/acsami.6b00255

    67. [67]

      Lv Q, Si W Y, Yang Z. Nitrogen-Doped Porous Graphdiyne:A Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction[J]. ACS Appl Mater Interfaces, 2017,9(35):29744-29752. doi: 10.1021/acsami.7b08115

    68. [68]

      Zhang S S, Cai Y J, He H Y. Heteroatom Doped Graphdiyne as Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium[J]. J Mater Chem A, 2016,4(13):4738-4744. doi: 10.1039/C5TA10579J

    69. [69]

      Liu R, Liu H, Li Y. Nitrogen-doped Graphdiyne as a Metal-Free Catalyst for High-Performance Oxygen Reduction Reactions[J]. Nanoscale, 2014,6(19):11336-11343. doi: 10.1039/C4NR03185G

    70. [70]

      He J, Wang N, Cui Z. Hydrogen Substituted Graphdiyne as Carbon-Rich Flexible Electrode for Lithium and Sodium Ion Batteries[J]. Nat Commun, 2017,8(1)1172. doi: 10.1038/s41467-017-01202-2

    71. [71]

      Du R, Zhang N, Xu H. CMP Aerogels:Ultrahigh-Surface-Area Carbon-Based Monolithic Materials with Superb Sorption Performance[J]. Adv Mater, 2014,26(47):8053-8058. doi: 10.1002/adma.v26.47

    72. [72]

      Wang N, He J, Tu Z. Synthesis of Chlorine-Substituted Graphdiyne and Applications for Lithium-Ion Storage[J]. Angew Chem Inter Ed, 2017,56(36):10740-10745. doi: 10.1002/anie.201704779

    73. [73]

      Wang N, Li X, Tu Z. Synthesis and Electronic Structure of Boron-Graphdiyne with an sp-Hybridized Carbon Skeleton and Its Application in Sodium Storage[J]. Angew Chem Int Ed, 2018,57(15):3968-3973. doi: 10.1002/anie.201800453

    74. [74]

      Yang Z, Shen X, Wang N. Graphdiyne Containing Atomically Precise N Atoms for Efficient Anchoring of Lithium Ion[J]. ACS Appl Mater Interfaces, 2018. doi: 10.1021/acsami.8b01823

    75. [75]

      Jia Z, Zuo Z, Yi Y. Low Temperature, Atmospheric Pressure for Synthesis of a New Carbon Ene-yne and Application in Li Storage[J]. Nano Energy, 2017,33:343-349. doi: 10.1016/j.nanoen.2017.01.049

  • 加载中
    1. [1]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    2. [2]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    12. [12]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    13. [13]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    14. [14]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(7)
  • Abstract views(409)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return