Citation: CHANG Xiaowen, LU Tingting, WEI Yingzhen, GUO Mingyue, YAN Wenfu, XU Ruren. Influence of Carbon Chain Length on the Structure-Directing Effect of Ethylenediamine in the Synthesis of Open-Framework Aluminophosphates[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1138-1147. doi: 10.11944/j.issn.1000-0518.2018.09.180115 shu

Influence of Carbon Chain Length on the Structure-Directing Effect of Ethylenediamine in the Synthesis of Open-Framework Aluminophosphates

  • Corresponding author: YAN Wenfu, yanw@jlu.edu.cn
  • Received Date: 16 April 2018
    Revised Date: 27 April 2018
    Accepted Date: 3 May 2018

    Fund Project: the National Natural Science Foundation of China 21571075Supported by the National Natural Science Foundation of China(No.21571075, No.21320102001, No.21621001), the National Key Research and Development Program of China(No.2016YFB0701100), the 111 Project(No.B17020), Program for JLU Science and Technology Innovative Research Teamthe 111 Project B17020the National Natural Science Foundation of China 21320102001the National Natural Science Foundation of China 21621001the National Key Research and Development Program of China 2016YFB0701100

Figures(4)

  • By heating the initial mixture with the molar ratio of n (Al2O3):n (P2O5):n (R):n (H2O)=1:1:1:277 (R=ethylenediamine (EDA) or 1, 3-propanediamine (1, 3-DAP)) at 180℃, a highly crystalline three-dimensional anionic open-framework aluminophosphate of AlPO4-12 or UiO-26 was obtained. The crystallization processes of both initial mixtures were investigated by X-ray diffraction analysis (XRD), elemental analysis, and pH measurement. The volume and the Hirshfeld charge on the N atom of the diprotonated EDA and 1, 3-DAP were calculated by the "atom volume and surface" module and the Dmol3 module in Materials Studio, respectively. Theoretical calculation shows that the charge on the N atom of diprotonated EDA or 1, 3-DAP is 0.073 e and 0.064 e (Hirshfeld), respectively. The corresponding charge density is 1.8573 and 1.3400 e/nm3 (Hirshfeld). The corresponding formal charge density is 25.44 and 20.94 e/nm3, respectively. The framework charge density of AlPO4-12 and UiO-26 is -6.1 e/nm3 and -4.6 e/nm3, respectively. These results indicate that the change in the length of carbon-chain connected to the N atom in the amino group can affect the amount of charge and the charge density on it, which accordingly affects its initial structure-directing ability, resulting the crystallization product changed from AlPO4-12 to UiO-26 with a smaller charge density.
  • 加载中
    1. [1]

      Yu J H, Xu R R. Rational Approaches Toward the Design and Synthesis of Zeolitic Inorganic Open-Framework Materials[J]. Acc Chem Res, 2010,43(9):1195-1204. doi: 10.1021/ar900293m

    2. [2]

      Xu R R, Pang W Q, Yu J H, et al. Chemistry of Zeolites and Related Porous Materials[M]. New York:John Wiley & Sons, 2009.

    3. [3]

      Vermeiren W, Gilson J P. Impact of Zeolites on the Petroleum and Petrochemical Industry[J]. Top Catal, 2009,52(9):1131-1161. doi: 10.1007/s11244-009-9271-8

    4. [4]

      Primo A, Garcia H. Zeolites as Catalysts in Oil Refining[J]. Chem Soc Rev, 2014,43(22):7548-7561. doi: 10.1039/C3CS60394F

    5. [5]

      Kulprathipanja S. Zeolites in Industrial Separation and Catalysis[M]. Weinheim:Wiley-VCH, 2010.

    6. [6]

      Jacobs P A, Michiel D, Sels B F. Will Zeolite-Based Catalysis be as Relevant in Future Biorefineries as in Crude Oil Refineries?[J]. Angew Chem Int Edit, 2014,53(33):8621-8626. doi: 10.1002/anie.201400922

    7. [7]

      Cejka J, Corma A, Zones S. Zeolites and Catalysis: Synthesis, Reactions and Applications[M]. Wiley, 2010.

    8. [8]

      Feng G, Cheng P, Yan W. Accelerated Crystallization of Zeolites via Hydroxyl Free Radicals[J]. Science, 2016,351(6278):1188-1191. doi: 10.1126/science.aaf1559

    9. [9]

      Jiao F, Li J, Pan X. Selective Conversion of Syngas to Light Olefins[J]. Science, 2016,351(6277):1065-1068. doi: 10.1126/science.aaf1835

    10. [10]

      Wilson S T, Lok B M, Messina C A. Aluminophosphate Molecular Sieves:A New Class of Microporous Crystalline Inorganic Solids[J]. J Am Chem Soc, 1982,104(4):1146-1147. doi: 10.1021/ja00368a062

    11. [11]

      Murugavel R, Choudhury A, Walawalkar M G. Metal Complexes of Organophosphate Esters and Open-Framework Metal Phosphates:Synthesis, Structure, Transformations, and Applications[J]. Chem Rev, 2008,108(9):3549-3655. doi: 10.1021/cr000119q

    12. [12]

      Yan W F, Yu J H, Xu R R. [Al12P13O52]3-[(CH2)6N4H3]3+:An Anionic Aluminophosphate Molecular Sieve with Brönsted Acidity[J]. Chem Mater, 2000,12(9):2517-2519. doi: 10.1021/cm000280h

    13. [13]

      Zhou D, Chen L, Yu J H. Synthesis, Crystal Structure, and Solid-State NMR Spectroscopy of a New Open-Framework Aluminophosphate (NH4)2Al4(PO4)4(HPO4)·H2O[J]. Inorg Chem, 2005,44(12):4391-4397. doi: 10.1021/ic048476x

    14. [14]

      Yu J H, Xu R R. Rich Structure Chemistry in the Aluminophosphate Family[J]. Acc Chem Res, 2003,36(7):481-490. doi: 10.1021/ar0201557

    15. [15]

      Xing H Z, Li J Y, Yan W F. Cotemplating Ionothermal Synthesis of a New Open-Framework Aluminophosphate with Unique Al/P Ratio of 6/7[J]. Chem Mater, 2008,20(13):4179-4181. doi: 10.1021/cm800701x

    16. [16]

      WANG Ning, SUN Qiming, YAN Yan. Organotemplate-free Synthesis and Proton Conduction Properties of a Layered Aluminophosphate Na4[Al4P4O18]·H2O[J]. Chem J Chinese Univ, 2015,36(11):2311-2316.  

    17. [17]

      Tong X Q, Yan W F, Yu J H. A Chiral Open-Framework Fluoroaluminophosphate with Enantiomeric Excess in the Bulk Product[J]. Chem Commun, 2013,49(96):11287-11289. doi: 10.1039/c3cc47241h

    18. [18]

      LUO Wukui, YAN Guiyang, LI Shirong. Synthesis and Characterization of CuSAPO-5 Molecular Sieve for Toluene Adsorption[J]. Chinese J Inorg Chem, 2016,32(8):1370-1374.  

    19. [19]

      Wang X D, Huang Y J, Zhang X X. Synthesis of Hydrophilic Acid-Resistant Ge-ZSM-5 Membranes via Secondary Growth Method Using Silicalite-1 Zeolite as Seeds[J]. Chem Res Chinese Univ, 2017,33(1):12-16. doi: 10.1007/s40242-017-6198-7

    20. [20]

      LIU Ning, WANG Jiqiong, CHEN Biaohua. Study of Eight Membered Ring Zeolitic Catalyst of Cu/SAPO-35 over NH3-SCR[J]. Chem J Chinese Univ, 2016,37(10):1817-1825. doi: 10.7503/cjcu20160360

    21. [21]

      Chen Y L, Feng L. Synthesis, Characterization and Control of Proportion of Polymorph C in ITQ-16 and ITQ-17 Films[J]. Chem Res Chinese Uinv, 2016,32(6):1-7.  

    22. [22]

      Barrer R M, Denny P J. Hydrothermal Chemistry of the Silicates.Part Ⅸ.Nitrogenous Alurninosilicates[J]. J Chem Soc, 1961:971-982. doi: 10.1039/jr9610000971

    23. [23]

      Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites:Precursors, Intermediates and Reaction Mechanism[J]. Micropor Mesopor Mater, 2005,82(1):1-78.  

    24. [24]

      Huang P, Xu J, Qi G D. Temperature-Dependence of the Influence of the Position-2-methyl Group on the Structure-Directing Effect of Piperazine in the Synthesis of Open-Framework Aluminophosphates[J]. Sci Rep-UK, 2016,622019. doi: 10.1038/srep22019

    25. [25]

      Liu C Y, Gu W Y, Kong D J. The Significant Effects of the Alkali-Metal Cations on ZSM-5 Zeolite Synthesis:From Mechanism to Morphology[J]. Micropor Mesopor Mater, 2014,183:30-36. doi: 10.1016/j.micromeso.2013.08.037

    26. [26]

      Lok B M, Cannan T R, Messina C A. The Role of Organic Molecules in Molecular Sieve Synthesis[J]. Zeolites, 1983,3(4):282-291. doi: 10.1016/0144-2449(83)90169-0

    27. [27]

      LU Huiying, LIU Shu, XU Jun. Crystallization Process of Open-Framework Aluminophosphate AlPO4-12[J]. Chinese J Inorg Chem, 2015,31(9):1885-1893.  

    28. [28]

      Lu T T, Xu R R, Yan W F. Co-templated Synthesis of Polymorph A-Enriched Zeolite Beta[J]. Micropor Mesopor Mater, 2016,226:19-24. doi: 10.1016/j.micromeso.2015.12.025

    29. [29]

      Park G T, Jo D H, Ahn N H. Synthesis and Structural Characterization of a CHA-type AlPO4 Molecular Sieve with Penta-Coordinated Framework Aluminum Atoms[J]. Inorg Chem, 2017,56(14):8504-8512. doi: 10.1021/acs.inorgchem.7b01194

    30. [30]

      TIAN Ye, WANG Shurong, YAN Wenfu. Influence of F- on the Structure-directing Effect of Organic Amines in the Synthesis of Open-Framework Aluminophosphates[J]. Chem J Chinese Uinv, 2015,36(3):428-435.  

    31. [31]

      Tong M Q, Zhang D L, Fan W B. Synthesis of Chiral Polymorph A-Enriched Zeolite Beta with an Extremely Concentrated Fluoride Route[J]. Sci Rep-UK, 2015,511521. doi: 10.1038/srep11521

    32. [32]

      Trinh T T, Tran K-Q, Zhang X Q. The Role of a Structure Directing Agent Tetramethylammonium Template in the Initial Steps of Silicate Oligomerization in Aqueous Solution[J]. Phys Chem Chem Phys, 2015,17(34):21810-21818. doi: 10.1039/C5CP02068A

    33. [33]

      Wang G M, Li J H, Wei L. An Open-Framework Beryllium Phosphite with Extra-large 18-Ring Channels[J]. CrystEngComm, 2015,17(44):8414-8417. doi: 10.1039/C5CE01507C

    34. [34]

      Xin L, Sun H, Xu R R. Origin of the Structure-Directing Effect Resulting in Identical Topological Open-Framework Materials[J]. Sci Rep-UK, 2015,514940. doi: 10.1038/srep14940

    35. [35]

      Yan W F, Song X W, Xu R R. Molecular Engineering of Microporous Crystals:(Ⅰ)New Insight into the Formation Process of Open-Framework Aluminophosphates[J]. Micropor Mesopor Mater, 2009,123(1/2/3):50-62.  

    36. [36]

      Zhang B, Xu J, Fan F T. Molecular Engineering of Microporous Crystals:(Ⅲ)The Influence of Water Content on the Crystallization of Microporous Aluminophosphate AlPO4-11[J]. Micropor Mesopor Mater, 2012,147(1):212-221. doi: 10.1016/j.micromeso.2011.06.018 

    37. [37]

      Tong X Q, Xu J, Xin L. Molecular Engineering of Microporous Crystals:(Ⅵ)Structure-Directing Effect in the Crystallization Process of Layered Aluminophosphates[J]. Micropor Mesopor Mater, 2012,164:56-66. doi: 10.1016/j.micromeso.2012.07.021

    38. [38]

      Lu T T, Gao P, Xu J. Influence of Al3+ on Polymorph A Enrichment in the Crystallization of Beta Zeolite[J]. Chinese J Catal, 2015,36(6):889-896. doi: 10.1016/S1872-2067(14)60300-4

    39. [39]

      WANG Aitian, SUN Yangyang, XU Ruren. Synthesis of a New Open-Framework Aluminophosphate and the Co-templating Effect in the Crystallization[J]. Chem J Chinese Univ, 2017,38(5):701-705.  

    40. [40]

      Tong M Q, Zhang D L, Zhu L K. An Elaborate Structure Investigation of the Chiral Polymorph A-Enriched Zeolite Beta[J]. CrystEngComm, 2016,18(10):1782-1789. doi: 10.1039/C6CE00043F

    41. [41]

      Sun Y Y, Xu J, Wang Q. The Structure-Directing Effect of Organic Amines in the Multi-template/One-Structure Phenomenon of Microporous Crystal Synthesis[J]. Micropor Mesopor Mater, 2017,240:178-188. doi: 10.1016/j.micromeso.2016.11.025

    42. [42]

      Tong X Q, Xu J, Li X. Molecular Engineering of Microporous Crystals:(Ⅶ)The Molar Ratio Dependence of the Structure-Directing Ability of Piperazine in the Crystallization of Four Aluminophosphates with Open-Frameworks[J]. Micropor Mesopor Mater, 2013,176:112-122. doi: 10.1016/j.micromeso.2013.03.045

    43. [43]

      Keoh S H, Chaikittisilp W, Muraoka K. Factors Governing the Formation of Hierarchically and Sequentially Intergrown MFI Zeolites by Using Simple Diquaternary Ammonium Structure-Directing Agents[J]. Chem Mater, 2016,28(24):8997-9007. doi: 10.1021/acs.chemmater.6b03887

    44. [44]

      Lu H Y, Xu J, Gao P. Molecular Engineering of Microporous Crystals:(viii)The Solvent-Dependence of the Structure-Directing Effect of Ethylenediamine in the Synthesis of Open-Framework Aluminophosphates[J]. Micropor Mesopor Mater, 2015,208:105-112. doi: 10.1016/j.micromeso.2015.01.048

    45. [45]

      Tong X Q, Xu J, Wang C. The Dependence of the Structure-Directing Effect of Piperazine and the Crystallization Pathways of Open-Framework Aluminophosphates on the Local Environment of the Initial Mixture[J]. Micropor Mesopor Mater, 2014,183:108-116. doi: 10.1016/j.micromeso.2013.09.004

    46. [46]

      Ikuno T, Chaikittisilp W, Liu Z D. Structure-Directing Behaviors of Tetraethylammonium Cations Toward Zeolite Beta Revealed by the Evolution of Aluminosilicate Species Formed During the Crystallization Process[J]. J Am Chem Soc, 2015,137(45):14533-14544. doi: 10.1021/jacs.5b11046

    47. [47]

      HU Chengyu, YAN Wenfu, XU Ruren. Phase Transition Behavior of Zeolite Y Under Hydrothermal Conditions[J]. Acta Chim Sin, 2017,75(7):679-685.  

    48. [48]

      J Francis R, O'hare D. The Kinetics and Mechanisms of the Crystallisation of Microporous Materials[J]. J Chem Soc Dalton Trans, 1998(19):3133-3148. doi: 10.1039/a802330a

    49. [49]

      Tong X Q, Xu J, Wang C. Molecular Engineering of Microporous Crystals:(Ⅴ)Investigation of the Structure-Directing Ability of Piperazine in Forming Two Layered Aluminophosphates[J]. Micropor Mesopor Mater, 2012,155:153-166. doi: 10.1016/j.micromeso.2012.01.032

    50. [50]

      Parise J B. Aluminium Phosphate Frameworks with Clathrated Ethylenediamine:X-ray Characterization of Al3P3O11(OH)2·N2C2H8(AlPO4-12)[J]. J Chem Soc Chem Commun, 1984(21):1449-1450. doi: 10.1039/C39840001449

    51. [51]

      Kongshaug K O, Fjellvåg H, Lillerud K P. Synthesis, Structure and Thermal Properties of a Novel 3D Aluminophosphate UiO-26[J]. Micropor Mesopor Mater, 2000,40(1):313-322.  

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    3. [3]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    5. [5]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    10. [10]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    11. [11]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    19. [19]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(0)
  • Abstract views(687)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return