Citation: LÜ Yuzhen, SUN Qian, HAN Qiubo, SUN Zhen, HUANG Meng, LI Chengrong. Hydrothermal Synthesis and Morphological Control of γ-AlOOH Nanorods[J]. Chinese Journal of Applied Chemistry, ;2018, 35(8): 932-938. doi: 10.11944/j.issn.1000-0518.2018.08.180129 shu

Hydrothermal Synthesis and Morphological Control of γ-AlOOH Nanorods

  • Corresponding author: LÜ Yuzhen, yzlv@ncepu.edu.cn
  • Received Date: 24 April 2018
    Revised Date: 11 June 2018
    Accepted Date: 13 June 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.51472084, No.51337003)the National Natural Science Foundation of China 51472084the National Natural Science Foundation of China 51337003

Figures(7)

  • The morphology of γ-AlOOH, as a precursor to γ-Al2O3 in the liquid-phase synthesis system, is closely related with the performance of final product. In this paper, γ-AlOOH nanorods were synthesized by hydrothermal method. The aspect ratio of γ-AlOOH nanorods was modified by changing the concentration of Al3+ and the type of base. The crystal structure and morphology of the as-synthesized products were characterized by X-ray diffraction(XRD) and transmission electron microscopy(TEM). The results show that the aspect ratio of γ-AlOOH nanorods can be tuned in the range of 5.9~8.0 with the increase of concentration of Al3+, and further adjusted into 8.0~10.0 by changing the type of base. Based on the analysis of the crystallization process, it is believed that the complexation reaction between aluminum ions and hydroxyl groups is accelerated by increasing the concentration of Al3+ and the base strength of precipitants. The increase of the content of Al(OH)3 is beneficial to the formation of γ-AlOOH nuclei and facilitates the oriented attachment of nuclei, leading to a significant increase of aspect ratio of nanorods. The positive impact breakdown strength of transformer oil modified by nano γ-Al2O3(volume fraction of 0.1%) obtained by sintering γ-AlOOH nanorods with a length to diameter ratio of 10.0 is 9.9% higher than that of pure oil.
  • 加载中
    1. [1]

      SIMA Wenxia, CAO Xuefei, YANG Qing. Comparison and Analysis of Breakdown Properties of Three Kinds of Nano-Modified Transformer Oil Under Impact Voltage[J]. High Voltage Technol, 2015,41(2):374-381.  

    2. [2]

      Yang Q, Liu M, Sima W X. Effect of Electrode Materials on the Space Charge Distribution of an Al2O3 Nano-Modified Transformer Oil Under Impulse Voltage Conditions[J]. J Phys D Appl Phys, 2017,50(46):1-10.  

    3. [3]

      Singh M, Kundan L. Experimental Study on Thermal Conductivity and Viscosity of Al2O3-Nanotransformer Oil[J]. Int J Theor Appl Res Mech Eng, 2013,2(3):108-112.  

    4. [4]

      ZHANG Yonggang, YAN Pei. Preparation and Application of Nano-alumina[J]. Inorg Salt Ind, 2001,33(3):19-22.  

    5. [5]

      LI Jinlin, ZHANG Xin, WANG Li. Controllable Synthesis and Characterization of γ-Al2O3 Nanocrystals with Specific Morphology[J]. J South China Univ Nat(Nat Sci Ed), 2016,35(4):1-4.  

    6. [6]

      JING Xiaoyan, YU Xueqing, ZHANG Milin. Preparation of Nano γ-Al2O3[J]. Appl Sci Technol, 2004,31(9):56-58.  

    7. [7]

      Yi J H, Sun Y Y, Gao J F. Synthesis of Crystalline γ-Al2O3 with High Purity[J]. Trans Nonferrous Met Soc China, 2009,19(5):1237-1242. doi: 10.1016/S1003-6326(08)60435-5

    8. [8]

      Abdollahifar M. Synthesis and Characterisation of γ-Al2O3 with Porous Structure and Nanorod Morphology[J]. J Chem Res, 2014,38(3):154-158. doi: 10.3184/174751914X13910938972748

    9. [9]

      Bell T E, Gonzalezcarballo J M, Tooze R P. Single-Step Synthesis of Nanostructured g-Alumina with Solvent Reusability to Maximise Yield and Morphological Purity[J]. J Mater Chem A, 2015,3(11):6196-6201. doi: 10.1039/C4TA06692H

    10. [10]

      Jiang Z Q, Ma H W, Yang J. Synthesis of Nanosized Pseudoboehmite and γ-Al2O3 by Control Precipitation Method[J]. Adv Mater Res, 2013,684:46-52. doi: 10.4028/www.scientific.net/AMR.684

    11. [11]

      JIANG Qingmin, ZHI Hongmei, YANG Mei. Preparation and Application of Nanometer Alumina[J]. Diamond Abrasiv Eng, 2014,34(3):77-82.  

    12. [12]

      LI Yan, SONG Meihui. Preparation and Modification of Nano-Alumina[J]. Heilongjiang Sci, 2012(2):38-41.  

    13. [13]

      Xiang Y C, Soon W Lee. pH-Dependent formation of Boehmite (γ-AlOOH) Nanorods and Nanoflakes[J]. Chem Phys Lett, 2007,438(4):279-284.  

    14. [14]

      Bell T E, Gonzálezcarballo J M, Tooze R P. γ-Al2O3 Nanorods with Tuneable Dimensions-A Mechanistic Understanding of Their Hydrothermal Synthesis[J]. RSC Adv, 2017,7(36):22369-22377. doi: 10.1039/C7RA02590D

    15. [15]

      Yang Q. The Reaction Conditions Influence on Hydrothermal Synthesis of Boehmite Nanorods[J]. Inorg Mater, 2010,46(9):953-958. doi: 10.1134/S0020168510090062

    16. [16]

      Li Y Y, Liu J P, Jia Z J. Fabrication of Boehmite AlOOH Nanofibers by a Simple Hydrothermal Process[J]. Mater Lett, 2006,60(29):3586-3590.  

    17. [17]

      Wang X, Wang Z D. Particle Effect on Breakdown Voltage of Mineral and Ester Based Transformer Oils[C]. Electrical Insulation and Dielectric Phenomena, Quebec City, Canada, 2008: 598-602.

    18. [18]

      Chen X Y, Zhang Z J, Li X L. Controlled Hydrothermal Synthesis of Colloidal Boehmite(γ-AlOOH) Nanorods and Nanoflakes and Their Conversion into γ-Al2O3, Nanocrystals[J]. Solid State Commun, 2008,145(7):368-373.

    19. [19]

      LI Youzhu, HUANG Zhaoming, WANG Shengzhang. Hydrothermal Synthesis and Thermal Decomposition of Alumina Nanorods[J]. J Inorg Mater, 2008,23(1):121-124.  

    20. [20]

      LU Guangwei, YANG Qi, Deng Yida. Hydrothermal Synthesis of One-Dimensional Nanostructured γ-AlOOH Nanostructures[J]. J Inorg Mater, 2009,24(3):463-468.  

    21. [21]

      Hwang J G, Zahn M, Osullivan F M. Effects of Nanoparticle Charging on Streamer Development in Transformer Oil-Based Nanofluids[J]. J Appl Phys, 2010,107(1)014310. doi: 10.1063/1.3267474

  • 加载中
    1. [1]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    12. [12]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    13. [13]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

Metrics
  • PDF Downloads(6)
  • Abstract views(995)
  • HTML views(280)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return