Citation: YUAN Ruoxin, LIU Xingang, ZHANG Chuhong. Preparation of Tin Oxide-Graphene Flexible Electrode and Its Application in Lithium Ion Battery[J]. Chinese Journal of Applied Chemistry, ;2018, 35(7): 825-833. doi: 10.11944/j.issn.1000-0518.2018.07.180158 shu

Preparation of Tin Oxide-Graphene Flexible Electrode and Its Application in Lithium Ion Battery

  • Corresponding author: ZHANG Chuhong, chuhong.zhang@scu.edu.cn
  • Received Date: 7 May 2018
    Revised Date: 20 May 2018
    Accepted Date: 21 May 2018

    Fund Project: Supported by the National Basic Research Program of China(973 program)(No.2013CB934700), the National Natural Science Foundation of China(No.51673123), the Program of State Key Laboratory of Polymer Materials Engineering of China(No.SKLPME2014-1-04)the National Basic Research Program of China(973 program) 2013CB934700the National Natural Science Foundation of China 51673123the Program of State Key Laboratory of Polymer Materials Engineering of China SKLPME2014-1-04

Figures(8)

  • Flexible free-standing tin oxide(SnO2) nanoparticles with different particle size/graphene sandwich paper electrodes were fabricated via a simple filtration method.The influence of SnO2 particle size on electrochemical performances was investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electronic microscopy(TEM), Brunauer, atomic force microscope(AFM), Emmett and Teller analysis(BET) and electrochemical measurements.The results show that the best electrochemical performance can be obtained when the particle size of nanoparticle is at 6 nm.When applied as an anode for lithium ion battery, an excellent cycling stability with a reversible capacity of 555 mA·h/g after 100 cycles at 100 mA/g is delivered, which is far superior to those of pristine SnO2 and the corresponding composites composed of larger or smaller particles than optimum.
  • 加载中
    1. [1]

      Jeong G, Kim Y U, Kim H. Prospective Materials and Applications for Li Secondary Batteries[J]. Energy Environ Sci, 2011,4(6):1986-2002. doi: 10.1039/c0ee00831a

    2. [2]

      Nishide H, Oyaizu K. Toward Flexible Batteries[J]. Science, 2008,319(5864):737-738. doi: 10.1126/science.1151831

    3. [3]

      Larcher D, Beattie S, Morcrette M. Recent Findings and Prospects in the Field of Pure Metals as Negative Electrodes for Li-Ion Batteries[J]. J Mater Chem, 2007,17(36):3759-3772. doi: 10.1039/b705421c

    4. [4]

      Huang J Y, Zhong L, Wang C M. In situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode[J]. Science, 2011,42(10):1515-1520.  

    5. [5]

      Kim C, Noh M, Choi M. Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery[J]. Chem Mater, 2005,17(12):3297-3301. doi: 10.1021/cm048003o

    6. [6]

      Lou X W, Deng D, Lee J Y. Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties[J]. Chem Mater, 2008,20(20):6562-6566. doi: 10.1021/cm801607e

    7. [7]

      Zhou X, Wan L J, Guo Y G. Binding SnO2, Nanocrystals in Nitrogen-Doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries[J]. Adv Mater, 2013,25(15)21522157.  

    8. [8]

      Shi Y, Wen L, Li F. Nanosized Li4Ti5O12/Graphene Hybrid Materials with Low Polarization for High Rate Lithium Ion Batteries[J]. J Power Sources, 2011,196(20):8610-8617. doi: 10.1016/j.jpowsour.2011.06.002

    9. [9]

      Zhou X, Wu T, Ding K. Dispersion of Graphene Sheets in Ionic Liquid[bmim] [PF6] Stabilized by an Ionic Liquid Polymer[J]. Chem Commun, 2010,46(3):386-388. doi: 10.1039/B914763B

    10. [10]

      Park S K, Yu S H, Pinna N. A Facile Hydrazine-Assisted Hydrothermal Method for the Deposition of Monodisperse SnO2 Nanoparticles onto Graphene for Lithium Ion Batteries[J]. J Mater Chem, 2011,22(6):2520-2525.  

    11. [11]

      Chen Z, Zhou M, Cao Y. In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage[J]. Adv Energy Mater, 2012,2(1):94-94. doi: 10.1002/aenm.201290002

    12. [12]

      Li X, Meng X, Liu J. Batteries:Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage[J]. Adv Funct Mater, 2012,22(8):1646-1646. doi: 10.1002/adfm.v22.8

    13. [13]

      Wang R, Xu C, Sun J. Solvothermal-induced 3D Macroscopic SnO2/Nitrogen-doped Graphene Aerogels for High Capacity and Long-Life Lithium Storage[J]. ACS Appl Mater Interfaces, 2014,6(5):3427-3436. doi: 10.1021/am405557c

    14. [14]

      Prabakar S J R, Hwang Y H, Bae E G. SnO2/Graphene Composites with Self-Assembled Alternating Oxide and Amine Layers for High Li-Storage and Excellent Stability[J]. Adv Mater, 2013,25(24):3307-3312. doi: 10.1002/adma.v25.24

    15. [15]

      Liang J, Zhao Y, Guo L. Flexible Free-Standing Graphene/SnO Nanocomposites Paper for Li-Ion Battery[J]. ACS Appl Mater Interfaces, 2012,4(1):5742-5748.

    16. [16]

      Wang X, Cao X, Bourgeois L. N-Doped Graphene-SnO2 Sandwich Paper for High-Performance Lithium-Ion Batteries[J]. Adv Mater, 2012,22(13)26822690.  

    17. [17]

      Xi G, Ye J. Ultrathin SnO2 Nanorods:Template- and Surfactant-Free Solution Phase Synthesis, Growth Mechanism, Optical, Gas-Sensing, and Surface Adsorption Properties[J]. Inorg Chem, 2010,9(5):2302-2309.  

    18. [18]

      Lian P, Zhu X, Liang S. High Reversible Capacity of SnO/Graphene Nanocomposite as an Anode Material for Lithium-Ion Batteries[J]. Electrochim Acta, 2011,56(12):4532-4539. doi: 10.1016/j.electacta.2011.01.126

    19. [19]

      Chen J S, Lou X W. SnO2, and TiO2, Nanosheets for Lithium-Ion Batteries[J]. J Mater Chem, 2011,21(27):9912-9924. doi: 10.1039/c0jm04163g

    20. [20]

      Lou X W, Chen J S, Chen P. One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties[J]. Chem Mater, 2009,21(13):2868-2874. doi: 10.1021/cm900613d

    21. [21]

      Larcher D, Beattie S, Morcrette M. Recent Findings and Prospects in the Field of Pure Metals as Negative Electrodes for Li-Ion Batteries[J]. J Mater Chem, 2007,17(36):3759-3772. doi: 10.1039/b705421c

    22. [22]

      Wang F, Song X, Yao G. Carbon-coated Mesoporous SnO2, Nanospheres as Anode Material for Lithium Ion Batteries[J]. Scripta Mater, 2012,66(8):562-565. doi: 10.1016/j.scriptamat.2012.01.003

    23. [23]

      Chen Z, Zhou M, Cao Y. In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage[J]. Adv Energy Mater, 2012,2(1):95-102. doi: 10.1002/aenm.201100464

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(2)
  • Abstract views(671)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return