Citation: HAN Xu, DING Guanyu, DONG Qing, YANG Xiuyun, LI Dan, DU Yan, WANG Erkang. Research Progress of Nano-Gene Carriers Based on Liposomes[J]. Chinese Journal of Applied Chemistry, ;2018, 35(7): 735-744. doi: 10.11944/j.issn.1000-0518.2018.07.180031 shu

Research Progress of Nano-Gene Carriers Based on Liposomes

Figures(7)

  • Gene therapy is a method for curing diseases caused by genetic defects and anomalies through introducing normal foreign genes into targeted cells. Efficient and sustained expression of foreign genes in cells is the decisive factor in gene therapy, which is significantly relied on the vectors used in the treatment. With the development of science and technology, the research of liposome/nanocomposites as gene carriers has widely attracted people's attention, due to the following advantages:versatile functions, easy surface modification, good biocompatibility, high transfection efficiency. Herein, the structure of liposome bilayer was introduced and the complexes of magnetic nanoparticles, gold nanoparticles, quantum dots, chitosan, upconversion nanoparticles with liposomes as gene carriers have been reviewed and prospected.
  • 加载中
    1. [1]

      Loh X J, Ong S J, Tung Y T. Co-delivery of Drug and DNA from Cationic Dual-responsive Micelles Derived from Poly(DMAEMA-co-PPGMA)[J]. Mater Sci Eng:C, 2013,33(8):4545-4550. doi: 10.1016/j.msec.2013.07.011

    2. [2]

      El-Aneed A. An Overview of Current Delivery Systems in Cancer Gene Therapy[J]. J Control Release, 2004,94(1):1-14. doi: 10.1016/j.jconrel.2003.09.013

    3. [3]

      Koo H, Huh M S, Sun I C. In vivo Targeted Delivery of Nanoparticles for Theranosis[J]. Acc Chem Res, 2011,44(10):1018-1028. doi: 10.1021/ar2000138

    4. [4]

      ZHANG Yangde. Nanopharmacy[M]. Beijing:Chemical Industry Press, 2015:60-61(in Chinese).

    5. [5]

      SUN Bo. Preparation of Ivermectin Liposomes and Their Effects on Drug Distribution in Sheep[D]. Beijing: China Agricultural University, 2003(in Chinese). 

    6. [6]

      CHEN Jixiang, LI Guanglin. New Advances in the Application of Liposomes in Biology[J]. Gansu Anim Husband Veterin Med, 2000,30(3):28-29.  

    7. [7]

      LI Xiuying, ZENG Fan, ZHAO Yao. Research Progress of Liposome Drug Delivery System[J]. Chinese J New Drugs, 2014,23(16):1904-1911.  

    8. [8]

      Zhang S, Gibson L, Preece D, et al. Viscoelasticity Measurements Inside Liposomes[C]//Optical Trapping and Optical Micromanipulation XI. International Society for Optics and Photonics, 2014, 9164: 91642O.

    9. [9]

      van der Westen R, Hosta-Rigau L, Sutherland D S. Myoblast Cell Interaction with Polydopamine Coated Liposomes[J]. Biointerphases, 2012,7(1/2/3/4):8-16.  

    10. [10]

      Huang Z, Liu Y H, Zhang Y M. Cyclen-based Cationic Lipids Containing a pH-sensitive Moiety as Gene Delivery Vectors[J]. Org Biomol Chem, 2015,13(2):620-630. doi: 10.1039/C4OB01856G

    11. [11]

      Bangham A D, Standish M M, Watkins J C. Diffusion of Univalentions Across the Lamellae of Swollen Phospholipids[J]. J Mol Biol, 1965,13(1):238-252. doi: 10.1016/S0022-2836(65)80093-6

    12. [12]

      Sessa G, Weissmann G. Phospholipid Spherules(liposomes) as a Model for Biological Membranes[J]. J Lipid Res, 1968,9(3):310-318.  

    13. [13]

      HU Jianjun, QIAO Weihong, LI Zongshi. Application of Liposomes in Drug Controlled Release and Gene Therapy[C]. Seventh International Conference on Surfactant Detergent Proceedings. Taiyuan: Shanxi Chemical Industry Press, 2002(in Chinese).

    14. [14]

      DANG Qifeng, LIU Chengsheng, YAN Jingquan. Preparation and Physicochemical Properties of Carboxymethyl Chitosan Coated VE Liposomes[J]. J Funct Mater, 2011,42(9):1631-1634.  

    15. [15]

      ZHANG Chengxiang, ZHAO Weiyu, LÜ Wanliang. Preparation of Multifunctional Targeting Epirubicin Liposomes and Their Inhibitory Effect on Glioma Cells[J]. Chinese Pharm J, 2015,5(14):1208-1214.  

    16. [16]

      YANG Tong. Advances in Novel Liposomes[J]. Herald Med, 2009,28(3):336-338.  

    17. [17]

      Yu Q, Hu X, Ma Y. Lipids-based Nanostructured Lipid Carriers(NLCs) for Improved Oral Bioavailability of Sirolimus[J]. Drug Deliv, 2016,23(4):1469-1475. doi: 10.3109/10717544.2016.1153744

    18. [18]

      Balguri S P, Adelli G R, Majumdar S. Topical Ophthalmic Lipid Nanoparticle Formulations(SLN, NLC) of Indomethacin for Delivery to the Posterior Segment Ocular Tissues[J]. Eur J Pharm Biopharm, 2016,109:224-235. doi: 10.1016/j.ejpb.2016.10.015

    19. [19]

      Esposito E, Ravani L, Drechsler M. Cannabinoid Antagonist in Nanostructured Lipid Carriers(NLCs):Design, Characterization and in vivo Study[J]. Mater Sci Eng:C, 2015,48:328-336. doi: 10.1016/j.msec.2014.12.012

    20. [20]

      WANG Qin, GONG Yuefa, YANG Xiangliang. Recent Advances of Gene Carrier Cationic Polymers[J]. J Guangdong Pharm Univ, 2004,20(1):62-64.  

    21. [21]

      Namiki Y, Namiki T, Yoshida H. A Novel Magnetic Crystal-Lipid Nanostructure for Magnetically Guided in vivo Gene Delivery[J]. Nat Nanotechnol, 2009,4(9):598-606. doi: 10.1038/nnano.2009.202

    22. [22]

      Holzbach T, Vlaskou D, Neshkova I. Non-viral VEGF(165) Gene Therapy-Magnetofection of Acoustically Active Magnetic Lipospheres(Magnetobubbles') Increases Tissue Survival in an Oversized Skin Flapmodel[J]. J Cell Mol Med, 2008,14(3):587-599.

    23. [23]

      Pan X, Guan J, Yoo J W. Cationic Lipid-coated Magnetic Nanoparticles Associated with Transferrin for Gene Delivery[J]. Int J Pharm, 2008,358(1):263-270.  

    24. [24]

      Heun Y, Hildebrand S, Heidsieck A. Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery in vivo[J]. Theranostics, 2017,7(2):295-307. doi: 10.7150/thno.16192

    25. [25]

      Gao D, Lin X P, Zhang Z P. Intracellular Cargo Delivery by virus Capsid Protein-based Vehicles:From Nano to Micro[J]. Nanomed-Nanotechnol, 2016,12(2):365-376. doi: 10.1016/j.nano.2015.10.023

    26. [26]

      Zhao Z, Zhou Z, Bao J. Octapod Iron Oxide Nanoparticles as High-Performance T2 Contrast Agents for Magnetic Resonance Imaging[J]. Nat Commun, 2013,4:2266-2272. doi: 10.1038/ncomms3266

    27. [27]

      Oliver M, Ahmad A, Kamaly N. MAGfect:A Novel Liposome Formulation for MRI Labelling and Visualization of Cells[J]. Org Biomol Chem, 2006,4(18):3489-3497. doi: 10.1039/b605394g

    28. [28]

      Luo X, Li B, Zhang X. Dual-functional Lipid-like Nanoparticles for Delivery of mRNA and MRI Contrast Agents[J]. Nanoscale, 2017,9(4):1575-1579. doi: 10.1039/C6NR08496F

    29. [29]

      Li P C, Li D, Zhang L. Cationic Lipid Bilayer Coated Gold Nanoparticles-Mediated Transfection of Mammalian Cells[J]. Biomaterials, 2008,29(26):3617-3624. doi: 10.1016/j.biomaterials.2008.05.020

    30. [30]

      Li D, Li P C, Li G. The Effect of Nocodazole on the Transfection Efficiency of Lipid-Bilayer Coated Gold Nanoparticles[J]. Biomaterials, 2009,30(7):1382-1388. doi: 10.1016/j.biomaterials.2008.11.037

    31. [31]

      Du B, Gu X, Han X. Lipid-Coated Gold Nanoparticles Functionalized by Folic Acid as Gene Vectors for Targeted Gene Delivery in vitro and in vivo[J]. Chem Med Chem, 2017,12(21):1768-1775. doi: 10.1002/cmdc.201700391

    32. [32]

      WU Feng, CAI Jiye. Application of Quantum Dots in Cancer Research[J]. Acta Laser Biol Sin, 2007,16(6):800-804.  

    33. [33]

      Shao D, Li J, Pan Y. Noninvasive Theranostic Imaging of HSV-TK/GCV Suicide Gene Therapy in Liver Cancer by Folate-Targeted Quantum Dot-based Liposomes[J]. Biomater Sci, 2015,3(6):833-841. doi: 10.1039/C5BM00077G

    34. [34]

      Kim M W, Jeong H Y, Kang S J. Cancer-targeted Nucleic Acid Delivery and Quantum Dot Imaging Using EGF Receptor Aptamer-conjugated Lipid Nanoparticles[J]. Sci Rep, 2017,7(1):9474-9484. doi: 10.1038/s41598-017-09555-w

    35. [35]

      Murata J, Ohya Y, Ouchi T. Possibility of Application of Quaternary Chitosan Having Pendant Galactose Residues as Gene Delivery Tool[J]. Carbohydr Polym, 1996,29(1):69-74. doi: 10.1016/0144-8617(95)00144-1

    36. [36]

      Baghdan E, Pinnapireddy S R, Strehlow B. Lipid Coated Chitosan-DNA Nanoparticles for Enhanced Gene Delivery[J]. Int J Pharm, 2018,535(1):473-479.  

    37. [37]

      Tezgel Ö, Szarpak-Jankowska A, Arnould A. Chitosan-Lipid Nanoparticles(CS-LNPs):Application to siRNA Delivery[J]. J Colloid Interface Sci, 2018,510:45-56. doi: 10.1016/j.jcis.2017.09.045

    38. [38]

      Wang L, Yan R, Huo Z. Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles[J]. Angew Chem Int Ed, 2005,44(37):6054-6057. doi: 10.1002/(ISSN)1521-3773

    39. [39]

      Chen Z, Chen H, Hu H. Versatile Synthesis Strategy for Carboxylic Acid-Functionalized Upconverting Nanophosphors as Biological Labels[J]. J Am Chem Soc, 2008,130(10):3023-3029. doi: 10.1021/ja076151k

    40. [40]

      Song C, Zhang S, Zhou Q. Bifunctional Cationic Solid Lipid Nanoparticles of β-NaYF4:Yb, Er Upconversion Nanoparticles Coated with a Lipid for Bioimaging and Gene Delivery[J]. RSC Adv, 2017,7(43):26633-26639. doi: 10.1039/C7RA02683H

    41. [41]

      Duan G, Kang S, Tian X. Protein Corona Mitigates the Cytotoxicity of Graphene Oxide by Reducing Its Physical Interaction with Cell Membrane[J]. Nanoscale, 2015,7(37):15214-15224. doi: 10.1039/C5NR01839K

    42. [42]

      Chong Y, Ge C, Yang Z. Reduced Cytotoxicity of Graphene Nanosheets Mediated by Blood-Protein Coating[J]. ACS Nano, 2015,9(6):5713-5724. doi: 10.1021/nn5066606

    43. [43]

      Imani R, Shao W, Taherkhani S. Dual-functionalized Graphene Oxide for Enhanced siRNA Delivery to Breast Cancer Cells[J]. Colloid Surf B, 2016,147:315-325. doi: 10.1016/j.colsurfb.2016.08.015

    44. [44]

      Zhang L, Yao H J, Yu Y. Mitochondrial Targeting Liposomes Incorporating Daunorubicin and Quinacrine for Treatment of Relapsed Breast Cancer Arising from Cancer Stem Cells[J]. Biomaterials, 2012,33(2):565-582. doi: 10.1016/j.biomaterials.2011.09.055

    45. [45]

      Ma X, Zhou J, Zhang C X. Modulation of Drug-Resistant Membrane and Apoptosis Proteins of Breast Cancer Stem Cells by Targeting Berberine Liposomes[J]. Biomaterials, 2013,34(18):4452-4465. doi: 10.1016/j.biomaterials.2013.02.066

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    11. [11]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    12. [12]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    13. [13]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    14. [14]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    17. [17]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    18. [18]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

Metrics
  • PDF Downloads(3)
  • Abstract views(1900)
  • HTML views(921)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return