Citation: FAN Zhenzhen, FAN Lifang, DONG Chuan. Synthesis of Iodine Oxygen Bismuth/Titanium Dioxide Nanorod Arrays Composite and Photoelectrochemical Detection of Bisphenol A[J]. Chinese Journal of Applied Chemistry, ;2018, 35(7): 834-841. doi: 10.11944/j.issn.1000-0518.2018.07.180005 shu

Synthesis of Iodine Oxygen Bismuth/Titanium Dioxide Nanorod Arrays Composite and Photoelectrochemical Detection of Bisphenol A

  • Corresponding author: DONG Chuan, dc@sxu.edu.cn
  • Received Date: 8 January 2018
    Revised Date: 26 February 2018
    Accepted Date: 22 March 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.21707082, No.21575084), the Natural Science Foundation of Shanxi Province, China(No.201601D202008)the National Natural Science Foundation of China 21575084, the Natural Science Foundation of Shanxi Province, China 201601D202008the National Natural Science Foundation of China 21707082

Figures(8)

  • Iodine oxygen bismuth/titanium dioxide nanorod arrays(BiOI/TiO2 NRAs) composite was synthesized in situ on fluorine-doped tin oxide-coated glass(FTO) substrate by simple two-step hydrothermal method.The composite was characterized by scanning electron microscope and X-ray diffraction.The photoelectrochemical(PEC) behaviors were studied using current-time curve.The combination of BiOI with TiO2 NRAs extends effectively the adsorption of TiO2 to visible region, and the formed p-n heterojunction could contribute to the spatial charge separation as well as the enhanced photocatalytic activity.The PEC sensing platform fabricated by using this composite was applied for detection of bisphenol A(BPA) via the oxidation of BPA by the consumption of photogenerated holes during PEC reaction.Under 420 nm irradiation, current-time curve was used for sensitive detection of BPA at applied potential of 0.0 V, a wide linear work range from 0.0047 to 14.7 μmol/L was obtained with a low detection limit of 0.93 nmol/L(S/N=3).The developed PEC sensor exhibits high sensitivity, good stability and reproducibility.This sensor was also used to evaluate the level of BPA in real samples with good recovery from 98.0% to 107.1%.
  • 加载中
    1. [1]

      Rubin B S. Bisphenol A:An Endocrine Disruptor with Widespread Exposure and Multiple Effects[J]. J Steroid Biochem Mol Biol, 2011,127(1/2):27-34.  

    2. [2]

      Alonso-Magdalena P, Ropero A B, Soriano S. Bisphenol-A Acts as a Potent Estrogen via Non-classical Estrogen Triggered Pathways[J]. Mol Cell Endocrinol, 2012,355(2):201-207. doi: 10.1016/j.mce.2011.12.012

    3. [3]

      Perez-Lobato R, Mustieles V, Calvente I. Exposure to Bisphenol A and Behavior in School-Age Children[J]. Neuro Toxicol, 2016,53:12-19.

    4. [4]

      Miao M H, Yuan W, Zhu G P. In Utero Exposure to Bisphenol-A and Its Effect on Birth Weight of Offspring[J]. Reprod Toxicol, 2011,32(1):64-68. doi: 10.1016/j.reprotox.2011.03.002

    5. [5]

      Chen J F, Xiao Y Y, Gai Z X. Reproductive Toxicity of Low Level Bisphenol A Exposures in a Two-Generation Zebrafish Assay:Evidence of Male-specific Effects[J]. Aquat Toxicol, 2015,169:204-214. doi: 10.1016/j.aquatox.2015.10.020

    6. [6]

      Soto A M, Sonnenschein C. Environmental Causes of Cancer:Endocrine Disruptors as Carcinogens[J]. Nat Rev Endocrinol, 2010,6(7):363-370. doi: 10.1038/nrendo.2010.87

    7. [7]

      Devadoss A, Sudhagar P, Terashima C K. Photoelectrochemical Biosensors:New Insights into Promising Photoelectrodes and Signal Amplification Strategies[J]. J Photochem Photobiol C, 2015,24:43-63. doi: 10.1016/j.jphotochemrev.2015.06.002

    8. [8]

      Wu X L, Wang L B, Ma W. A Simple, Sensitive, Rapid and Specific Detection Method for Bisphenol A Based on Fluorescence Polarization Immunoassay[J]. Immunol Invest, 2016,41(1):38-50.  

    9. [9]

      Braunrath R, Podlipna D, Padlesak S. Determination of Bisphenol A in Canned Foods by Immunoaffinity Chromatography, HPLC, and Fluorescence Detection[J]. J Agric Food Chem, 2005,53(23):8911-8917. doi: 10.1021/jf051525j

    10. [10]

      Jiao Y N, Ding L, Fu S L. Determination of Bisphenol A, Bisphenol F and Their Diglycidyl Ethers in Environmental Water by Solid Phase Extraction Using Magnetic Multiwalled Carbon Nanotubes Followed by GC-MS/MS[J]. Anal Methods, 2012,4(1):291-298. doi: 10.1039/C1AY05433C

    11. [11]

      Yi B, Kim C, Yang M. Biological Monitoring of Bisphenol A with HLPC/FLD and LC/MS/MS Assays[J]. J Chromatogr B, 2010,878(27):2606-2610. doi: 10.1016/j.jchromb.2010.02.008

    12. [12]

      Zhao W W, Xu J J, Chen H Y. Photoelectrochemical Bioanalysis:The State of the Art[J]. Chem Soc Rev, 2015,44(3):729-741. doi: 10.1039/C4CS00228H

    13. [13]

      Zhao W W, Xu J J, Chen H Y. Photoelectrochemical DNA Biosensors[J]. Chem Rev, 2014,114(15):7421-7441. doi: 10.1021/cr500100j

    14. [14]

      Tang J, Zhang Y Y, Kong B. Solar-Driven Photoelectrochemical Probing of Nanodot/Nanowire/Cell Interface[J]. Nano Lett, 2014,14(5):2702-2708. doi: 10.1021/nl500608w

    15. [15]

      Macwan D P, Dave P N, Chaturvedi S. A Review on Nano-TiO2 Sol-Gel Type Syntheses and Its Applications[J]. J Mater Sci, 2011,46(11):3669-3686. doi: 10.1007/s10853-011-5378-y

    16. [16]

      Wang X D, Li Z D, Shi J. One-dimensional Titanium Dioxide Nanomaterials:Nanowires, Nanorods, and Nanobelts[J]. Chem Rev, 2014,114(19):9346-9384. doi: 10.1021/cr400633s

    17. [17]

      Xiao X, Zhang W D. Facile synthesis of Nanostructured BiOI Microspheres with High Visible Light-induced Photocatalytic Activity[J]. J Mater Chem, 2010,20(28):5866-5870. doi: 10.1039/c0jm00333f

    18. [18]

      Lei Y Q, Wang G H, Song S Y. Room Temperature, Template-Free Synthesis of BiOI Hierarchical Structures:Visible-Light Photocatalytic and Electrochemical Hydrogen Storage Properties[J]. Dalton Trans, 2010,39(13):3273-3278. doi: 10.1039/b922126c

    19. [19]

      Zhang L, Ruan Y F, Liang Y Y. Bismuth Oxyiodide Couples with Glucose Oxidase:A Special Synergized Dual-catalysis Mechanism for Photoelectrochemical Enzymatic Bioanalysis[J]. Appl Mater Interfaces, 2018,10(4):3372-3379. doi: 10.1021/acsami.7b17647

    20. [20]

      Zhang X, Zhang L Z, Xie T F. Low-temperature Synthesis and High Visible-light-induced Photocatalytic Activity of BiOI/TiO2 Heterostructures[J]. J Phys Chem C, 2009,113(17):7371-7378. doi: 10.1021/jp900812d

    21. [21]

      Liao C X, Ma Z J, Dong G P. BiOI Nanosheets Decorated TiO2 Nanofiber:Tailoring Water Purification Performance of Photocatalyst in Structural and Photo-Responsivity Aspects[J]. Appl Surf Sci, 2014,314:481-489. doi: 10.1016/j.apsusc.2014.07.032

    22. [22]

      Liu B, Aydil E S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-sensitized Solar Cells[J]. J Am Chem Soc, 2009,131(11):3985-3990. doi: 10.1021/ja8078972

    23. [23]

      Wang L Y, Daoud W A. BiOI/TiO2-nanorod Array Heterojunction Solar Cell:Growth, Charge Transport Kinetics and Photoelectrochemical Properties[J]. Appl Surf Sci, 2015,324:532-537. doi: 10.1016/j.apsusc.2014.10.110

    24. [24]

      Chen H P, Tang N, Chen M. Endothelialization of TiO2 Nanorods Coated with Ultrathin Amorphous Carbon Films[J]. Nanoscale Res Lett, 2016,11:145-153. doi: 10.1186/s11671-016-1358-0

    25. [25]

      Zhao W W, Shan S, Ma Z Y. Acetylcholine Esterase Antibodies on BiOI Nanoflakes/TiO2 Nanoparticles Electrode:A Case of Application for General Photoelectrochemical Enzymatic Analysis[J]. Anal Chem, 2013,85(24):11686-11690. doi: 10.1021/ac403691a

    26. [26]

      Yu C M, Gou L L, Zhou X H. Chitosan-Fe3O4 Nanocomposite Based Electrochemical Sensors for the Determination of Bisphenol A[J]. Electrochim Acta, 2011,56(25):9056-9063. doi: 10.1016/j.electacta.2011.05.135

    27. [27]

      Lin Y Q, Liu K Y, Liu C Y. Electrochemical Sensing of Bisphenol A Based on Polyglutamic Acid/Amino-Functionalised Carbon Nanotubes Nanocomposite[J]. Electrochim Acta, 2014,133:492-500. doi: 10.1016/j.electacta.2014.04.095

    28. [28]

      Hu L S, Fong C C, Zhang X M. Au Nanoparticles Decorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A[J]. Environ Sci Technol, 2016,50(8):4430-4438. doi: 10.1021/acs.est.5b05857

  • 加载中
    1. [1]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    9. [9]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

Metrics
  • PDF Downloads(1)
  • Abstract views(1750)
  • HTML views(1116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return