Research Progress of Antimony-Based Anode Materials for Lithium Ion Batteries
- Corresponding author: CHENG Yong, cyong@ciac.ac.cn
Citation:
WANG Zhaomin, YI Zheng, ZHONG Ming, CHENG Yong, WANG Limin. Research Progress of Antimony-Based Anode Materials for Lithium Ion Batteries[J]. Chinese Journal of Applied Chemistry,
;2018, 35(7): 745-755.
doi:
10.11944/j.issn.1000-0518.2018.07.170387
Goodenough J B. Electrochemical Energy Storage in a Sustainable Modern Society[J]. Energy Environ Sci, 2014,7(4):14-18.
Tarascon J M, Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001,414(6861):359-367. doi: 10.1038/35104644
Tran T D, Feikert J H, Pekala R W. Rate Effect on Lithium-Ion Graphite Electrode Performance[J]. J Appl Electrochem, 1996,26(11):1161-1167.
He M, Kravchyk K, Walter M, Kovalenko M V. Monodisperse Antimony Nanocrystals for High-Rate Li-Ion and Na-Ion Battery Anodes:Nano Versus Bulk[J]. Nano Lett, 2014,14(3):1255-1262. doi: 10.1021/nl404165c
ZHAO Lingzhi, HU Shequn, TIAN Qin. Influence of Sputtering Power on Cyclic Performance of Sb Thin Films as Anodes of Lithium Ion Battery[J]. Chinese J Power Sources, 2009,33(8):652-654.
LAI Xinfang, ZHAO Lingzhi, RU Qiang. Influence of Sputtering Time on Cyclic Performance of Sb Thin Films as Anodes of Lithium Ion Battery[J]. Chinese J Power Sources, 2010,34(4):379-381.
Kim H, Cho J. Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material[J]. Chem Mater, 2008,20(5):1679-1681. doi: 10.1021/cm703401u
Hou H S, Jing M J, Ji X B. Sodium/Lithium Storage Behavior of Antimony Hollow Nanospheres for Rechargeable Batteries[J]. ACS Appl Mater Interfaces, 2014,6(18):16189-16196. doi: 10.1021/am504310k
Ramireddy T, Rahman M M, Glushenkov A M. Stable Anode Performance of an Sb-Carbon Nanocomposite in Lithium-Ion Batteries and the Effect of Ball Milling Mode in the Course of Its Preparation[J]. J Mater Chem A, 2014,2(12):4282-4291. doi: 10.1039/c3ta14643j
Fan L, Zhu Y C, Qian Y T. Electrochemical Performance of Rod-Like Sb-C Composite as Anodes for Li-Ion and Na-Ion Batteries[J]. J Mater Chem A, 2015,3(7):3276-3280. doi: 10.1039/C4TA06771A
Liu J, Yu Y, Zhu M. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries[J]. Nano Lett, 2017,17(3):2034-2042. doi: 10.1021/acs.nanolett.7b00083
Lv H L, Qiu S, Lu G X. Nanostructured Antimony/Carbon Composite Fibers as Anode Material for Lithium-Ion Battery[J]. Electrochim Acta, 2015,151:214-221. doi: 10.1016/j.electacta.2014.11.013
He X M, Pu W H, Wang L. Synthesis of Nano Sb-encapsulated Pyrolytic Polyacrylonitrile Composite for Anode Material in Lithium Secondary Batteries[J]. Electrochim Acta, 2007,52(11):3651-3653. doi: 10.1016/j.electacta.2006.10.029
Nuli Y, Yang J, Jiang M S. Synthesis and Characterization of Sb/CNT and Bi/CNT Composites as Anode Materials for Lithium-Ion Batteries[J]. Mater Lett, 2008,62(14):2092-2095. doi: 10.1016/j.matlet.2007.11.022
Yi Z, Han Q G, Cheng Y. A Novel Strategy to Prepare Sb Thin Film Sandwiched Between the Reduced Graphene Oxide and Ni Foam as Binder-Free Anode Material for Lithium-Ion Batteries[J]. Electrochim Acta, 2016,190:804-810. doi: 10.1016/j.electacta.2015.12.150
Yi Z, Han Q G, Ju S S. Fabrication of One-Dimensional Sb@TiO2 Composites as Anode Materials for Lithium-Ion Batteries[J]. J Electrochem Soc, 2016,163(13):A2641-A2646. doi: 10.1149/2.0881613jes
Sung J H, Park C M. Sb-based Nanostructured Composite with Embedded TiO2 for Li-Ion Battery Anodes[J]. Mater Lett, 2013,98(5):15-18.
Allcorn E, Manthiram A. FeSb2-Al2O3-C Nanocomposite Anodes for Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2014,6(14):10886-10891. doi: 10.1021/am500448f
Leibowitz J, Allcorn E, Manthiram A. SnSb-TiC-C Nanocomposite Alloy Anodes for Lithium-Ion Batteries[J]. J Power Sources, 2015,279:549-554. doi: 10.1016/j.jpowsour.2015.01.055
Park C M, Sohn H J. Electrochemical Characteristics of TiSb2 and Sb/TiC/C Nanocomposites as Anodes for Rechargeable Li-Ion Batteries[J]. J Electrochem Soc, 2010,157(1):A46-A49. doi: 10.1149/1.3254161
Park M G, Song J H, Sohn J S. Co-Sb Intermetallic Compounds and Their Disproportionated Nanocomposites as High-Performance Anodes for Rechargeable Li-Ion Batteries[J]. J Mater Chem A, 2014,2(29):11391-11399. doi: 10.1039/C4TA00968A
Zhu J X, Sun T, Chen J S. Controlled Synthesis of Sb Nanostructures and Their Conversion to CoSb3 Nanoparticle Chains for Li-Ion Battery Electrodes[J]. Chem Mater, 2010,22(18):5333-5339. doi: 10.1021/cm101663w
Yang Y W, Chen Y B, Liu F. Template-based Fabrication and Electrochemical Performance of CoSb Nanowire Arrays[J]. Electrochim Acta, 2011,56(18):6420-6425. doi: 10.1016/j.electacta.2011.05.011
Allcorn E, Kim S O, Manthiram A. Thermal Stability of Active/Inactive Nanocomposite Anodes Based on Cu2Sb in Lithium-Ion Batteries[J]. J Power Sources, 2015,299:501-508. doi: 10.1016/j.jpowsour.2015.09.020
Morcrette M, Larcher D, Tarascon J M. Influence of Electrode Microstructure on the Reactivity of Cu2Sb with Lithium[J]. Electrochim Acta, 2007,52:5339-5345. doi: 10.1016/j.electacta.2007.01.083
Villevieille C, Bousquet C M I, Fraisse B. Comparative Study of NiSb2 and FeSb2 as Negative Electrodes for Li-Ion Batteries[J]. Solid State Ionics, 2011,192(1):351-355. doi: 10.1016/j.ssi.2010.04.029
Liu J, Yang Z Z, Wang J Q. Three-dimensionally Interconnected Nickel-Antimony Intermetallic Hollow Nanospheres as Anode Material for High-Rate Sodium-Ion Batteries[J]. Nano Energy, 2015,16:389-398. doi: 10.1016/j.nanoen.2015.07.020
Hou H S, Cao X Y, Yang Y C. NiSb Alloy Hollow Nanospheres as Anode Materials for Rechargeable Lithium Ion Batteries[J]. Chem Commun, 2014,50(60):8201-8203. doi: 10.1039/C4CC02875A
Allcorn E, Manthiram A. FeSb2-Al2O3-C Nanocomposite Anodes for Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2014,6(14):10886-10891. doi: 10.1021/am500448f
Baggetto L, Allcorn E, Unocic R R. Mo3Sb7 as a Very Fast Anode Material for Lithium-Ion and Sodium-Ion Batteries[J]. J Mater Chem A, 2013,1(37):11163-11169. doi: 10.1039/c3ta12040f
Applestone D, Yoon S, Manthiram A. Mo3Sb7-C Composite Anodes for Lithium-Ion Batteries[J]. J Phys Chem C, 2011,115(38):18909-18915. doi: 10.1021/jp206012v
Xu J J, Wu H Y, Wang F. Zn4Sb3 Nanotubes as Lithium Ion Battery Anodes with High Capacity and Cycling Stability[J]. Adv Energy Mater, 2013,3(3):286-289. doi: 10.1002/aenm.v3.3
Shiva K, Rajendra H B, Bhattacharyya A J. Electrospun SnSb Crystalline Nanoparticles Inside Porous Carbon Fibers as a High Stability and Rate Capability Anode for Rechargeable Batteries[J]. ChemPlusChem, 2015,80(3):516-521. doi: 10.1002/cplu.201402291
Hassoun J, Derrien G, Panero S. A SnSb-C Nanocomposite as High Performance Electrode for Lithium Ion Batteries[J]. Electrochim Acta, 2009,54(19):4441-4444. doi: 10.1016/j.electacta.2009.03.027
Fan L, Zhang J J, Zhu Y C. Comparison Between SnSb-C and Sn-C Composites as Anode Materials for Lithium-Ion Batteries[J]. RSC Adv, 2014,4(107):62301-62307. doi: 10.1039/C4RA12304B
Hewitt K C, Beaulieu L Y, Dahn J R. Electrochemistry of InSb as a Li Insertion Host Problems and Prospects[J]. J Electrochem Soc, 2001,148(5):A402-A410. doi: 10.1149/1.1359194
Honda H, Sakaguchi H, Fukuda Y. Anode Behaviors of Aluminum Antimony Synthesized by Mechanical Alloying for Lithium Secondary Battery[J]. Mater Res Bull, 2003,38(4):647-656. doi: 10.1016/S0025-5408(03)00003-5
Zhou J, Zheng C H, Wang H. 3D Nest-shaped Sb2O3/RGO Composite Based High-Performance Lithium-Ion Batteries[J]. Nanoscale, 2016,8(39):17131-17135. doi: 10.1039/C6NR06454J
Ansari Y, Guo B K, Cho J H. Low-cost, Dendrite-Blocking Polymer-Sb2O3 Separators for Lithium and Sodium Batteries[J]. J Electrochem Soc, 2014,161(10):A1655-A1661. doi: 10.1149/2.0631410jes
Bryngelsson H, Eskhult J, Nyholm L. Electrodeposited Sb and Sb/Sb2O3 Nanoparticle Coatings as Anode Materials for Li-Ion Batteries[J]. Chem Mater, 2007,19(5):1170-1180. doi: 10.1021/cm0624769
Zhou X Z, Zhang Z F, Wang J W. Sb2O4/reduced Graphene Oxide Composite as High-Performance Anode Material for Lithium Ion Batteries[J]. J Alloy Compd, 2017,699:611-618. doi: 10.1016/j.jallcom.2016.12.434
Yi Z, Han Q G, Li X. Two-Step Oxidation of Bulk Sb to One-dimensional Sb2O4 Submicron-Tubes as Advanced Anode Materials for Lithium-Ion and Sodium-Ion Batteries[J]. Chem Eng J, 2017,315:101-107. doi: 10.1016/j.cej.2017.01.020
LV Chengxue, CHU Jiayi, ZHAI Yuchun. Researches on the Antimony-based Composite Oxide as Anode Materials for Lithium Ion Battery[J]. J Harbin Inst Technol, 2004,36(10):1307-1309. doi: 10.3321/j.issn:0367-6234.2004.10.008
Li J M, Du K, Lai Y Q. ZnSb2O6:An Advanced Anode Material for Li-ion Batteries[J]. J Mater Chem A, 2017,5(22):10843-10848. doi: 10.1039/C7TA02290E
Yan C S, Chen G, Chen D H. Double Surfactant-directed Controllable Synthesis of Sb2S3 Crystals with Comparable Electrochemical Performances[J]. CrystEngComm, 2014,16(33):7753-7760. doi: 10.1039/C4CE00871E
Hong J L, Wei H, Xia D G. High-Performance Sb2S3/Sb Anode Materials for Li-Ion Batteries[J]. Mater Lett, 2016,179:114-117. doi: 10.1016/j.matlet.2016.05.028
Zhou X Z, Bai L H, Yan J. Solvothermal Synthesis of Sb2S3/C Composite Nanorods with Excellent Li-Storage Performance[J]. Electrochim Acta, 2013,108(10):17-21.
Yi Z, H an, Q G, Cheng Y. Facile Synthesis of Symmetric Bundle-like Sb2S3 Micron-Structures and Their Application in Lithium-Ion Battery Anodes[J]. ChemComm, 2016,52(49):7691-7694.
Zhu Y Y, Nie P, Shen L F. High Rate Capability and Superior Cycle Stability of a Flower-like Sb2S3 Anode for High-Capacity Sodium Ion Batteries[J]. Nanoscale, 2015,7(7):3309-3315. doi: 10.1039/C4NR05242K
Park C M, Hwa Y, Sung N E. Stibnite(Sb2S3) and Its Amorphous Composite as Dual Electrodes for Rechargeable Lithium Batteries[J]. J Mater Chem, 2010,20(6):1097-1102. doi: 10.1039/B918220A
Prikhodchenko, Gun, Sladkevich. Conversion of Hydroperoxoantimonate Coated Graphenes to Sb2S3@Graphene for a Superior Lithium Battery Anode[J]. Chem Mater, 2012,24(24):4750-4757. doi: 10.1021/cm3031818
Luo W, Calas A, Tang C J. Ultralong Sb2Se3 Nanowire-based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries[J]. ACS Appl Mater Interfaces, 2016,8(51):35219-35226. doi: 10.1021/acsami.6b11544
Ma J M, Wang Y P, Wang Y J. One-dimensional Sb2Se3 Nanostructures:Solvothermal Synthesis, Growth Mechanism, Optical and Electrochemical Properties[J]. CrystEngComm, 2011,13(7):2369-2374. doi: 10.1039/c0ce00381f
Xue M Z, Fu Z W. Pulsed Laser Deposited Sb2Se3 Anode for Lithium-Ion Batteries[J]. J Alloy Compd, 2008,458(1):351-356.
Yu L, Chen J, Fu Z W. Pulsed Laser Deposited Heterogeneous Mixture of Li2Se-Sb2Se3 Nanocomposite as a New Storage Lithium Material[J]. Electrochim Acta, 2010,55(3):1258-1264. doi: 10.1016/j.electacta.2009.10.046
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022