Citation: WANG Zhaomin, YI Zheng, ZHONG Ming, CHENG Yong, WANG Limin. Research Progress of Antimony-Based Anode Materials for Lithium Ion Batteries[J]. Chinese Journal of Applied Chemistry, ;2018, 35(7): 745-755. doi: 10.11944/j.issn.1000-0518.2018.07.170387 shu

Research Progress of Antimony-Based Anode Materials for Lithium Ion Batteries

  • Corresponding author: CHENG Yong, cyong@ciac.ac.cn
  • Received Date: 27 October 2017
    Revised Date: 14 December 2017
    Accepted Date: 22 January 2018

    Fund Project: the Creative Research Groups of the National Natural Science Foundation of China 21221061Supported by the Creative Research Groups of the National Natural Science Foundation of China(No.21221061)

Figures(9)

  • As the typical anode material for lithium batteries, antimony-based materials have attracted much attention due to their high theoretical specific capacity and high safety performance. Nevertheless, antimony-based materials suffer significant capacity fading due to their large volume expansion in the charge-discharge process and poor electrical conductivity, which severely hinders their commercial applications in lithium batteries. The research progress of antimony-based anode materials in recent years is presented in this paper. Reaction mechanism, synthetic method and electrochemical performance are introduced and the research trend of antimony-based anode materials is prospected in the end.
  • 加载中
    1. [1]

      Goodenough J B. Electrochemical Energy Storage in a Sustainable Modern Society[J]. Energy Environ Sci, 2014,7(4):14-18.  

    2. [2]

      Tarascon J M, Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001,414(6861):359-367. doi: 10.1038/35104644

    3. [3]

      Tran T D, Feikert J H, Pekala R W. Rate Effect on Lithium-Ion Graphite Electrode Performance[J]. J Appl Electrochem, 1996,26(11):1161-1167.  

    4. [4]

      He M, Kravchyk K, Walter M, Kovalenko M V. Monodisperse Antimony Nanocrystals for High-Rate Li-Ion and Na-Ion Battery Anodes:Nano Versus Bulk[J]. Nano Lett, 2014,14(3):1255-1262. doi: 10.1021/nl404165c

    5. [5]

      ZHAO Lingzhi, HU Shequn, TIAN Qin. Influence of Sputtering Power on Cyclic Performance of Sb Thin Films as Anodes of Lithium Ion Battery[J]. Chinese J Power Sources, 2009,33(8):652-654.  

    6. [6]

      LAI Xinfang, ZHAO Lingzhi, RU Qiang. Influence of Sputtering Time on Cyclic Performance of Sb Thin Films as Anodes of Lithium Ion Battery[J]. Chinese J Power Sources, 2010,34(4):379-381.  

    7. [7]

      Kim H, Cho J. Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material[J]. Chem Mater, 2008,20(5):1679-1681. doi: 10.1021/cm703401u

    8. [8]

      Hou H S, Jing M J, Ji X B. Sodium/Lithium Storage Behavior of Antimony Hollow Nanospheres for Rechargeable Batteries[J]. ACS Appl Mater Interfaces, 2014,6(18):16189-16196. doi: 10.1021/am504310k

    9. [9]

      Ramireddy T, Rahman M M, Glushenkov A M. Stable Anode Performance of an Sb-Carbon Nanocomposite in Lithium-Ion Batteries and the Effect of Ball Milling Mode in the Course of Its Preparation[J]. J Mater Chem A, 2014,2(12):4282-4291. doi: 10.1039/c3ta14643j

    10. [10]

      Fan L, Zhu Y C, Qian Y T. Electrochemical Performance of Rod-Like Sb-C Composite as Anodes for Li-Ion and Na-Ion Batteries[J]. J Mater Chem A, 2015,3(7):3276-3280. doi: 10.1039/C4TA06771A

    11. [11]

      Liu J, Yu Y, Zhu M. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries[J]. Nano Lett, 2017,17(3):2034-2042. doi: 10.1021/acs.nanolett.7b00083

    12. [12]

      Lv H L, Qiu S, Lu G X. Nanostructured Antimony/Carbon Composite Fibers as Anode Material for Lithium-Ion Battery[J]. Electrochim Acta, 2015,151:214-221. doi: 10.1016/j.electacta.2014.11.013

    13. [13]

      He X M, Pu W H, Wang L. Synthesis of Nano Sb-encapsulated Pyrolytic Polyacrylonitrile Composite for Anode Material in Lithium Secondary Batteries[J]. Electrochim Acta, 2007,52(11):3651-3653. doi: 10.1016/j.electacta.2006.10.029

    14. [14]

      Nuli Y, Yang J, Jiang M S. Synthesis and Characterization of Sb/CNT and Bi/CNT Composites as Anode Materials for Lithium-Ion Batteries[J]. Mater Lett, 2008,62(14):2092-2095. doi: 10.1016/j.matlet.2007.11.022

    15. [15]

      Yi Z, Han Q G, Cheng Y. A Novel Strategy to Prepare Sb Thin Film Sandwiched Between the Reduced Graphene Oxide and Ni Foam as Binder-Free Anode Material for Lithium-Ion Batteries[J]. Electrochim Acta, 2016,190:804-810. doi: 10.1016/j.electacta.2015.12.150

    16. [16]

      Yi Z, Han Q G, Ju S S. Fabrication of One-Dimensional Sb@TiO2 Composites as Anode Materials for Lithium-Ion Batteries[J]. J Electrochem Soc, 2016,163(13):A2641-A2646. doi: 10.1149/2.0881613jes

    17. [17]

      Sung J H, Park C M. Sb-based Nanostructured Composite with Embedded TiO2 for Li-Ion Battery Anodes[J]. Mater Lett, 2013,98(5):15-18.

    18. [18]

      Allcorn E, Manthiram A. FeSb2-Al2O3-C Nanocomposite Anodes for Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2014,6(14):10886-10891. doi: 10.1021/am500448f

    19. [19]

      Leibowitz J, Allcorn E, Manthiram A. SnSb-TiC-C Nanocomposite Alloy Anodes for Lithium-Ion Batteries[J]. J Power Sources, 2015,279:549-554. doi: 10.1016/j.jpowsour.2015.01.055

    20. [20]

      Park C M, Sohn H J. Electrochemical Characteristics of TiSb2 and Sb/TiC/C Nanocomposites as Anodes for Rechargeable Li-Ion Batteries[J]. J Electrochem Soc, 2010,157(1):A46-A49. doi: 10.1149/1.3254161

    21. [21]

      Park M G, Song J H, Sohn J S. Co-Sb Intermetallic Compounds and Their Disproportionated Nanocomposites as High-Performance Anodes for Rechargeable Li-Ion Batteries[J]. J Mater Chem A, 2014,2(29):11391-11399. doi: 10.1039/C4TA00968A

    22. [22]

      Zhu J X, Sun T, Chen J S. Controlled Synthesis of Sb Nanostructures and Their Conversion to CoSb3 Nanoparticle Chains for Li-Ion Battery Electrodes[J]. Chem Mater, 2010,22(18):5333-5339. doi: 10.1021/cm101663w

    23. [23]

      Yang Y W, Chen Y B, Liu F. Template-based Fabrication and Electrochemical Performance of CoSb Nanowire Arrays[J]. Electrochim Acta, 2011,56(18):6420-6425. doi: 10.1016/j.electacta.2011.05.011

    24. [24]

      Allcorn E, Kim S O, Manthiram A. Thermal Stability of Active/Inactive Nanocomposite Anodes Based on Cu2Sb in Lithium-Ion Batteries[J]. J Power Sources, 2015,299:501-508. doi: 10.1016/j.jpowsour.2015.09.020

    25. [25]

      Morcrette M, Larcher D, Tarascon J M. Influence of Electrode Microstructure on the Reactivity of Cu2Sb with Lithium[J]. Electrochim Acta, 2007,52:5339-5345. doi: 10.1016/j.electacta.2007.01.083

    26. [26]

      Villevieille C, Bousquet C M I, Fraisse B. Comparative Study of NiSb2 and FeSb2 as Negative Electrodes for Li-Ion Batteries[J]. Solid State Ionics, 2011,192(1):351-355. doi: 10.1016/j.ssi.2010.04.029

    27. [27]

      Liu J, Yang Z Z, Wang J Q. Three-dimensionally Interconnected Nickel-Antimony Intermetallic Hollow Nanospheres as Anode Material for High-Rate Sodium-Ion Batteries[J]. Nano Energy, 2015,16:389-398. doi: 10.1016/j.nanoen.2015.07.020

    28. [28]

      Hou H S, Cao X Y, Yang Y C. NiSb Alloy Hollow Nanospheres as Anode Materials for Rechargeable Lithium Ion Batteries[J]. Chem Commun, 2014,50(60):8201-8203. doi: 10.1039/C4CC02875A

    29. [29]

      Allcorn E, Manthiram A. FeSb2-Al2O3-C Nanocomposite Anodes for Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2014,6(14):10886-10891. doi: 10.1021/am500448f

    30. [30]

      Baggetto L, Allcorn E, Unocic R R. Mo3Sb7 as a Very Fast Anode Material for Lithium-Ion and Sodium-Ion Batteries[J]. J Mater Chem A, 2013,1(37):11163-11169. doi: 10.1039/c3ta12040f

    31. [31]

      Applestone D, Yoon S, Manthiram A. Mo3Sb7-C Composite Anodes for Lithium-Ion Batteries[J]. J Phys Chem C, 2011,115(38):18909-18915. doi: 10.1021/jp206012v

    32. [32]

      Xu J J, Wu H Y, Wang F. Zn4Sb3 Nanotubes as Lithium Ion Battery Anodes with High Capacity and Cycling Stability[J]. Adv Energy Mater, 2013,3(3):286-289. doi: 10.1002/aenm.v3.3

    33. [33]

      Shiva K, Rajendra H B, Bhattacharyya A J. Electrospun SnSb Crystalline Nanoparticles Inside Porous Carbon Fibers as a High Stability and Rate Capability Anode for Rechargeable Batteries[J]. ChemPlusChem, 2015,80(3):516-521. doi: 10.1002/cplu.201402291

    34. [34]

      Hassoun J, Derrien G, Panero S. A SnSb-C Nanocomposite as High Performance Electrode for Lithium Ion Batteries[J]. Electrochim Acta, 2009,54(19):4441-4444. doi: 10.1016/j.electacta.2009.03.027

    35. [35]

      Fan L, Zhang J J, Zhu Y C. Comparison Between SnSb-C and Sn-C Composites as Anode Materials for Lithium-Ion Batteries[J]. RSC Adv, 2014,4(107):62301-62307. doi: 10.1039/C4RA12304B

    36. [36]

      Hewitt K C, Beaulieu L Y, Dahn J R. Electrochemistry of InSb as a Li Insertion Host Problems and Prospects[J]. J Electrochem Soc, 2001,148(5):A402-A410. doi: 10.1149/1.1359194

    37. [37]

      Honda H, Sakaguchi H, Fukuda Y. Anode Behaviors of Aluminum Antimony Synthesized by Mechanical Alloying for Lithium Secondary Battery[J]. Mater Res Bull, 2003,38(4):647-656. doi: 10.1016/S0025-5408(03)00003-5

    38. [38]

      Zhou J, Zheng C H, Wang H. 3D Nest-shaped Sb2O3/RGO Composite Based High-Performance Lithium-Ion Batteries[J]. Nanoscale, 2016,8(39):17131-17135. doi: 10.1039/C6NR06454J

    39. [39]

      Ansari Y, Guo B K, Cho J H. Low-cost, Dendrite-Blocking Polymer-Sb2O3 Separators for Lithium and Sodium Batteries[J]. J Electrochem Soc, 2014,161(10):A1655-A1661. doi: 10.1149/2.0631410jes

    40. [40]

      Bryngelsson H, Eskhult J, Nyholm L. Electrodeposited Sb and Sb/Sb2O3 Nanoparticle Coatings as Anode Materials for Li-Ion Batteries[J]. Chem Mater, 2007,19(5):1170-1180. doi: 10.1021/cm0624769

    41. [41]

      Zhou X Z, Zhang Z F, Wang J W. Sb2O4/reduced Graphene Oxide Composite as High-Performance Anode Material for Lithium Ion Batteries[J]. J Alloy Compd, 2017,699:611-618. doi: 10.1016/j.jallcom.2016.12.434

    42. [42]

      Yi Z, Han Q G, Li X. Two-Step Oxidation of Bulk Sb to One-dimensional Sb2O4 Submicron-Tubes as Advanced Anode Materials for Lithium-Ion and Sodium-Ion Batteries[J]. Chem Eng J, 2017,315:101-107. doi: 10.1016/j.cej.2017.01.020

    43. [43]

      LV Chengxue, CHU Jiayi, ZHAI Yuchun. Researches on the Antimony-based Composite Oxide as Anode Materials for Lithium Ion Battery[J]. J Harbin Inst Technol, 2004,36(10):1307-1309. doi: 10.3321/j.issn:0367-6234.2004.10.008

    44. [44]

      Li J M, Du K, Lai Y Q. ZnSb2O6:An Advanced Anode Material for Li-ion Batteries[J]. J Mater Chem A, 2017,5(22):10843-10848. doi: 10.1039/C7TA02290E

    45. [45]

      Yan C S, Chen G, Chen D H. Double Surfactant-directed Controllable Synthesis of Sb2S3 Crystals with Comparable Electrochemical Performances[J]. CrystEngComm, 2014,16(33):7753-7760. doi: 10.1039/C4CE00871E

    46. [46]

      Hong J L, Wei H, Xia D G. High-Performance Sb2S3/Sb Anode Materials for Li-Ion Batteries[J]. Mater Lett, 2016,179:114-117. doi: 10.1016/j.matlet.2016.05.028

    47. [47]

      Zhou X Z, Bai L H, Yan J. Solvothermal Synthesis of Sb2S3/C Composite Nanorods with Excellent Li-Storage Performance[J]. Electrochim Acta, 2013,108(10):17-21.

    48. [48]

      Yi Z, H an, Q G, Cheng Y. Facile Synthesis of Symmetric Bundle-like Sb2S3 Micron-Structures and Their Application in Lithium-Ion Battery Anodes[J]. ChemComm, 2016,52(49):7691-7694.

    49. [49]

      Zhu Y Y, Nie P, Shen L F. High Rate Capability and Superior Cycle Stability of a Flower-like Sb2S3 Anode for High-Capacity Sodium Ion Batteries[J]. Nanoscale, 2015,7(7):3309-3315. doi: 10.1039/C4NR05242K

    50. [50]

      Park C M, Hwa Y, Sung N E. Stibnite(Sb2S3) and Its Amorphous Composite as Dual Electrodes for Rechargeable Lithium Batteries[J]. J Mater Chem, 2010,20(6):1097-1102. doi: 10.1039/B918220A

    51. [51]

      Prikhodchenko, Gun, Sladkevich. Conversion of Hydroperoxoantimonate Coated Graphenes to Sb2S3@Graphene for a Superior Lithium Battery Anode[J]. Chem Mater, 2012,24(24):4750-4757. doi: 10.1021/cm3031818

    52. [52]

      Luo W, Calas A, Tang C J. Ultralong Sb2Se3 Nanowire-based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries[J]. ACS Appl Mater Interfaces, 2016,8(51):35219-35226. doi: 10.1021/acsami.6b11544

    53. [53]

      Ma J M, Wang Y P, Wang Y J. One-dimensional Sb2Se3 Nanostructures:Solvothermal Synthesis, Growth Mechanism, Optical and Electrochemical Properties[J]. CrystEngComm, 2011,13(7):2369-2374. doi: 10.1039/c0ce00381f

    54. [54]

      Xue M Z, Fu Z W. Pulsed Laser Deposited Sb2Se3 Anode for Lithium-Ion Batteries[J]. J Alloy Compd, 2008,458(1):351-356.  

    55. [55]

      Yu L, Chen J, Fu Z W. Pulsed Laser Deposited Heterogeneous Mixture of Li2Se-Sb2Se3 Nanocomposite as a New Storage Lithium Material[J]. Electrochim Acta, 2010,55(3):1258-1264. doi: 10.1016/j.electacta.2009.10.046

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    10. [10]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(7)
  • Abstract views(1305)
  • HTML views(806)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return