Insight into the Inhibitory Activities of Diverse Ligands for Tyrosinase Using Ligand- and Structure-based Approaches
- Corresponding author: CUI Fengchao, fccui@ciac.ac.cn LI Yunqi, yunqi@ciac.ac.cn
Citation:
TANG Haifeng, CUI Fengchao, LIU Lunyang, LI Yunqi. Insight into the Inhibitory Activities of Diverse Ligands for Tyrosinase Using Ligand- and Structure-based Approaches[J]. Chinese Journal of Applied Chemistry,
;2018, 35(7): 788-794.
doi:
10.11944/j.issn.1000-0518.2018.07.170332
ZHENG Aping, CHEN Bingnian, CHEN Fahe. Inhibition Effect of Vanadate-Replaced Polyoxometalates on Mushroom Tyrosinase[J]. Chinese J Appl Chem, 2013,30(2):165-170.
Kubo I, Chen Q, Nihei K. Molecular Design of Antibrowning Agents:Antioxidative Tyrosinase Inhibitors[J]. Food Chem, 2003,81(2):241-247. doi: 10.1016/S0308-8146(02)00418-1
Yi W, Cao R, Peng W. Synthesis and Biological Evaluation of Novel 4-Hydroxybenzaldehyde Derivatives as Tyrosinase Inhibitors[J]. Eur J Med Chem, 2010,45(2):639-646. doi: 10.1016/j.ejmech.2009.11.007
LI Lili, CHEN Bingnian, DENG Yangyang. Inhibitory Effects of Dawson Type Polyoxometalates on Tyrosinase[J]. Chinese J Appl Chem, 2017,34(1):83-89. doi: 10.11944/j.issn.1000-0518.2017.01.160094
WANG Zhen, DONG Wei, XU Yan. Synthesis of Substituted Benzylidene Hydrazinecarbothioamide(Hydrazinecarboxamide, Nitrohydrazinecarboximidamide) and Their Inhibitory Activity on Tyrosinase of Diamondback Moth Plutella xylostella(L.)[J]. Chinese J Pestic Sci, 2010,12(3):264-268.
Chai W, Shi Y, Feng H. Structure Characterization and Anti-Tyrosinase Mechanism of Polymeric Proanthocyanidins Fractionated from Kiwifruit Pericarp[J]. J Agric Food Chem, 2014,62(27):6382-6389. doi: 10.1021/jf501009v
Le-Thi-Thu H, Casanola-Martin G M, Marrero-Ponce Y. Novel Coumarin-Based Tyrosinase Inhibitors Discovered by OECD Principles-Validated QSAR Approach from an Enlarged, Balanced Database[J]. Mol Diversity, 2011,15(2):507-520. doi: 10.1007/s11030-010-9274-1
Caldas G B, Ramalho T C, da Cunha E F F. Application of 4D-QSAR Studies to a Series of Benzothiophene Analogs[J]. J Mol Model, 2014,202420. doi: 10.1007/s00894-014-2420-4
Ai N, Welsh W J, Santhanam U. Novel Virtual Screening Approach for the Discovery of Human Tyrosinase Inhibitors[J]. PloS One, 2014,9(11)e112788. doi: 10.1371/journal.pone.0112788
Azam S S, Uddin R, Syed A A S. Molecular Docking Studies of Potent Inhibitors of Tyrosinase and α-Glucosidase[J]. Med Chem Res, 2012,21(8):1677-1683. doi: 10.1007/s00044-011-9684-3
de la Lande A, Maddaluno J, Parisel O. Study of the Docking of Competitive Inhibitors at a Model of Tyrosinase Active Site:Insights from Joint Broken-Symmetry/Spin-Flip DFT Computations and ELF Topological Analysis[J]. Interdisciplin Sci-Comput Life Sci, 2010,2(1):3-11. doi: 10.1007/s12539-010-0096-8
Piquemal J, Maddaluno J, Silvi B. Theoretical Study of Phenol and 2-Aminophenol Docking at a Model of the Tyrosinase Active Site[J]. New J Chem, 2003,27(6):909-913. doi: 10.1039/b210307a
Takahashi S, Kamiya T, Saeki K. Structural Insights into the Hot Spot Amino Acid Residues of Mushroom Tyrosinase for the Bindings of Thujaplicins[J]. Biorg Med Chem, 2010,18(22):8112-8118. doi: 10.1016/j.bmc.2010.08.056
Kang S, Heo S, Kim K. Molecular Docking Studies of a Phlorotannin, Dieckol Isolated from Ecklonia Cava with Tyrosinase Inhibitory Activity[J]. Biorg Med Chem, 2012,20(1):311-316. doi: 10.1016/j.bmc.2011.10.078
Seebeck B, Reulecke I, Kaemper A. Modeling of Metal Interaction Geometries for Protein-Ligand Docking[J]. Proteins:Struct Funct Bioinf, 2008,71(3):1237-1254.
Kolbe L, Mann T, Gerwat W. 4-N-Butylresorcinol, a Highly Effective Tyrosinase Inhibitor for the Topical Treatment of Hyperpigmentation[J]. J Eur Acad Dermatol Venereol, 2013,27:19-23.
Curto E V, Kwong C, Hermersdorfer H. Inhibitors of Mammalian Melanocyte Tyrosinase:In Vitro Comparisons of Alkyl Esters of Gentisic Acid with Other Putative Inhibitors[J]. Biochem Pharmacol, 1999,57(6):663-672. doi: 10.1016/S0006-2952(98)00340-2
Breiman L. Random Forests[J]. Mach Learn, 2001,45(1):5-32. doi: 10.1023/A:1010933404324
Li Y, Fang J. PROTS-RF:A Robust Model for Predicting Mutation-Induced Protein Stability Changes[J]. PLoS One, 2012,7(10)e47247. doi: 10.1371/journal.pone.0047247
Li Y, Zhang J, Tai D. PROTS:A Fragment Based Protein Thermo-Stability Potential[J]. Proteins:Struct, Funct Bioinf, 2012,80(1):81-92. doi: 10.1002/prot.v80.1
Becke A D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior[J]. Phys Rev A, 1988,38(6):3098-3100. doi: 10.1103/PhysRevA.38.3098
Xue C, Luo W, Ding Q. Quantitative Structure-Activity Relationship Studies of Mushroom Tyrosinase Inhibitors[J]. J Comput Aided Mol Des, 2008,22(5):299-309. doi: 10.1007/s10822-008-9187-6
Berman H M, Westbrook J, Feng Z. The Protein Data Bank[J]. Nucl Acids Res, 2000,28(1):235-242. doi: 10.1093/nar/28.1.235
Phillips J C, Braun R, Wang W. Scalable Molecular Dynamics with NAMD[J]. J Comput Chem, 2005,26(16):1781-1802. doi: 10.1002/(ISSN)1096-987X
Srinivasan J, Cheatham T E, Cieplak P. Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices[J]. J Am Chem Soc, 1998,120(37):9401-9409. doi: 10.1021/ja981844+
Case D A, Darden T A, Cheatham T E, et al. Amber 12, 2012.
Miller B R, McGee T D, Jr , Swails J M. MMPBAS.Py:An Efficient Program for End-State Free Energy Calculations[J]. J Chem Theory Comput, 2012,8(9):3314-3321. doi: 10.1021/ct300418h
Cui F, Yang K, Li Y. Investigate the Binding of Catechins to Trypsin Using Docking and Molecular Dynamics Simulation[J]. PloS One, 2015,10(5):5994-5998.
Jeong S H, Ryu Y B, Curtis-Long M J. Tyrosinase Inhibitory Polyphenols from Roots of Morus Ihou[J]. J Agric Food Chem, 2009,57(4):1195-1203. doi: 10.1021/jf8033286
Munoz E, Avila J G, Alarcon J. Tyrosinase Inhibitors from Calceolaria integrifolia s.l.:Calceolaria talcana Aerial Parts[J]. J Agric Food Chem, 2013,61(18):4336-4343. doi: 10.1021/jf400531h
Kier L B, Hall L H. An Electrotopological-State Index for Atoms in Molecules[J]. Pharm Res, 1990,7(8):801-807. doi: 10.1023/A:1015952613760
LI Lili, CHEN Bingnian, DENG Yangyang. Inhibitory Effects of Dawson Type Polyoxometalates on Tyrosinase[J]. Chinese J Appl Chem, 2017,34(1):83-89. doi: 10.11944/j.issn.1000-0518.2017.01.160094
Xing R, Zheng A, Wang F. The Inhibitory Mechanism Research of Vanadate-Substituted Polyoxometalates on Tyrosianse[J]. J Mol Sci, 2015,31(5):436-440.
Tse M, Kermasha S, Ismail A. Biocatalysis by Tyrosinase in Organic Solvent Media; A Model System Using Catechin and Vanillin as Substrates[J]. J Mol Catal B-Enzym, 1997,2(4/5):199-213.
Kermasha S, Bao H, Bisakowski B. Biocatalysis of Tyrosinase Using Catechin as Substrate in Selected Organic Solvent Media[J]. J Mol Catal B-Enzym, ,11(4/5/6):929-938.
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Yuhui Yang , Jintian Luo , Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056
Ling Bai , Limin Lu , Xiaoqiang Wang , Dongping Wu , Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Chengyi Xiao , Xiaoli Sun , Chen Zhang , Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
The tyrosinase-inhibitor complex was stabled by three types of interactions, i.e. the van der waals interaction between I25 and His57、His201、Asn202、His205、Val215, the hydrogen bond between I25 and Glu192, and the electronic force between the hydroxyl group on I25 and bi-copper ions inside the active center of tyrosinase