Citation: TANG Haifeng, CUI Fengchao, LIU Lunyang, LI Yunqi. Insight into the Inhibitory Activities of Diverse Ligands for Tyrosinase Using Ligand- and Structure-based Approaches[J]. Chinese Journal of Applied Chemistry, ;2018, 35(7): 788-794. doi: 10.11944/j.issn.1000-0518.2018.07.170332 shu

Insight into the Inhibitory Activities of Diverse Ligands for Tyrosinase Using Ligand- and Structure-based Approaches

  • Corresponding author: CUI Fengchao, fccui@ciac.ac.cn LI Yunqi, yunqi@ciac.ac.cn
  • Received Date: 12 September 2017
    Revised Date: 25 October 2017
    Accepted Date: 10 January 2018

    Fund Project: One Hundred Person Project of the Chinese Academy of Science, and the China Postdoctoral Science Foundation 2014M561310the National Natural Science Foundation of China 21374117Supported by the National Natural Science Foundation of China(No.21374117, No.21504092), One Hundred Person Project of the Chinese Academy of Science, and the China Postdoctoral Science Foundation(No.2014M561310)the National Natural Science Foundation of China 21504092

Figures(4)

  • The use of variant inhibitors to regulate the bioactivities of tyrosinase, which is the key enzyme in charge of the production of melanin and pigments, is a long-standing approach to design cosmetic and pharmaceutical products. The quantitative description of the structure-activity relationship of tyrosinase inhibitors is still unclear. In this study, we constructed descriptive models by integrating ligand-and structure-based approaches for such purpose. They provide correlation coefficients of 0.961 for implicit models and 0.775 for explicit model, respectively, to descript the activities of three tea polyphenols with the tyrosinase inhibitory activity order of (-)-Epicatechin gallate(ECG) > (-)-Epigallocatechin gallate(EGCG) > Gallic acid(G). As revealing from the descriptive models, entropy loss is more important than other features for determining inhibitory activity and thus the tyrosinase-ECG complex with the fewer conformational entropy loss has the strongest inhibitory activity in vitro among the four tea polyphenols. Moreover, residues including His57, His201, Asn202, His205 Glu192 and Val215 are the core of active sites in tyrosinase, and stabilize the tyrosinase-inhibitor complex by van der Waals and hydrogen bonding interactions.
  • 加载中
    1. [1]

      ZHENG Aping, CHEN Bingnian, CHEN Fahe. Inhibition Effect of Vanadate-Replaced Polyoxometalates on Mushroom Tyrosinase[J]. Chinese J Appl Chem, 2013,30(2):165-170.  

    2. [2]

      Kubo I, Chen Q, Nihei K. Molecular Design of Antibrowning Agents:Antioxidative Tyrosinase Inhibitors[J]. Food Chem, 2003,81(2):241-247. doi: 10.1016/S0308-8146(02)00418-1

    3. [3]

      Yi W, Cao R, Peng W. Synthesis and Biological Evaluation of Novel 4-Hydroxybenzaldehyde Derivatives as Tyrosinase Inhibitors[J]. Eur J Med Chem, 2010,45(2):639-646. doi: 10.1016/j.ejmech.2009.11.007

    4. [4]

      LI Lili, CHEN Bingnian, DENG Yangyang. Inhibitory Effects of Dawson Type Polyoxometalates on Tyrosinase[J]. Chinese J Appl Chem, 2017,34(1):83-89. doi: 10.11944/j.issn.1000-0518.2017.01.160094 

    5. [5]

      WANG Zhen, DONG Wei, XU Yan. Synthesis of Substituted Benzylidene Hydrazinecarbothioamide(Hydrazinecarboxamide, Nitrohydrazinecarboximidamide) and Their Inhibitory Activity on Tyrosinase of Diamondback Moth Plutella xylostella(L.)[J]. Chinese J Pestic Sci, 2010,12(3):264-268.  

    6. [6]

      Chai W, Shi Y, Feng H. Structure Characterization and Anti-Tyrosinase Mechanism of Polymeric Proanthocyanidins Fractionated from Kiwifruit Pericarp[J]. J Agric Food Chem, 2014,62(27):6382-6389. doi: 10.1021/jf501009v

    7. [7]

      Le-Thi-Thu H, Casanola-Martin G M, Marrero-Ponce Y. Novel Coumarin-Based Tyrosinase Inhibitors Discovered by OECD Principles-Validated QSAR Approach from an Enlarged, Balanced Database[J]. Mol Diversity, 2011,15(2):507-520. doi: 10.1007/s11030-010-9274-1

    8. [8]

      Caldas G B, Ramalho T C, da Cunha E F F. Application of 4D-QSAR Studies to a Series of Benzothiophene Analogs[J]. J Mol Model, 2014,202420. doi: 10.1007/s00894-014-2420-4

    9. [9]

      Ai N, Welsh W J, Santhanam U. Novel Virtual Screening Approach for the Discovery of Human Tyrosinase Inhibitors[J]. PloS One, 2014,9(11)e112788. doi: 10.1371/journal.pone.0112788

    10. [10]

      Azam S S, Uddin R, Syed A A S. Molecular Docking Studies of Potent Inhibitors of Tyrosinase and α-Glucosidase[J]. Med Chem Res, 2012,21(8):1677-1683. doi: 10.1007/s00044-011-9684-3

    11. [11]

      de la Lande A, Maddaluno J, Parisel O. Study of the Docking of Competitive Inhibitors at a Model of Tyrosinase Active Site:Insights from Joint Broken-Symmetry/Spin-Flip DFT Computations and ELF Topological Analysis[J]. Interdisciplin Sci-Comput Life Sci, 2010,2(1):3-11. doi: 10.1007/s12539-010-0096-8

    12. [12]

      Piquemal J, Maddaluno J, Silvi B. Theoretical Study of Phenol and 2-Aminophenol Docking at a Model of the Tyrosinase Active Site[J]. New J Chem, 2003,27(6):909-913. doi: 10.1039/b210307a

    13. [13]

      Takahashi S, Kamiya T, Saeki K. Structural Insights into the Hot Spot Amino Acid Residues of Mushroom Tyrosinase for the Bindings of Thujaplicins[J]. Biorg Med Chem, 2010,18(22):8112-8118. doi: 10.1016/j.bmc.2010.08.056

    14. [14]

      Kang S, Heo S, Kim K. Molecular Docking Studies of a Phlorotannin, Dieckol Isolated from Ecklonia Cava with Tyrosinase Inhibitory Activity[J]. Biorg Med Chem, 2012,20(1):311-316. doi: 10.1016/j.bmc.2011.10.078

    15. [15]

      Seebeck B, Reulecke I, Kaemper A. Modeling of Metal Interaction Geometries for Protein-Ligand Docking[J]. Proteins:Struct Funct Bioinf, 2008,71(3):1237-1254.

    16. [16]

      Kolbe L, Mann T, Gerwat W. 4-N-Butylresorcinol, a Highly Effective Tyrosinase Inhibitor for the Topical Treatment of Hyperpigmentation[J]. J Eur Acad Dermatol Venereol, 2013,27:19-23.

    17. [17]

      Curto E V, Kwong C, Hermersdorfer H. Inhibitors of Mammalian Melanocyte Tyrosinase:In Vitro Comparisons of Alkyl Esters of Gentisic Acid with Other Putative Inhibitors[J]. Biochem Pharmacol, 1999,57(6):663-672. doi: 10.1016/S0006-2952(98)00340-2

    18. [18]

      Breiman L. Random Forests[J]. Mach Learn, 2001,45(1):5-32. doi: 10.1023/A:1010933404324

    19. [19]

      Li Y, Fang J. PROTS-RF:A Robust Model for Predicting Mutation-Induced Protein Stability Changes[J]. PLoS One, 2012,7(10)e47247. doi: 10.1371/journal.pone.0047247

    20. [20]

      Li Y, Zhang J, Tai D. PROTS:A Fragment Based Protein Thermo-Stability Potential[J]. Proteins:Struct, Funct Bioinf, 2012,80(1):81-92. doi: 10.1002/prot.v80.1

    21. [21]

      Becke A D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior[J]. Phys Rev A, 1988,38(6):3098-3100. doi: 10.1103/PhysRevA.38.3098

    22. [22]

      Xue C, Luo W, Ding Q. Quantitative Structure-Activity Relationship Studies of Mushroom Tyrosinase Inhibitors[J]. J Comput Aided Mol Des, 2008,22(5):299-309. doi: 10.1007/s10822-008-9187-6

    23. [23]

      Berman H M, Westbrook J, Feng Z. The Protein Data Bank[J]. Nucl Acids Res, 2000,28(1):235-242. doi: 10.1093/nar/28.1.235

    24. [24]

      Phillips J C, Braun R, Wang W. Scalable Molecular Dynamics with NAMD[J]. J Comput Chem, 2005,26(16):1781-1802. doi: 10.1002/(ISSN)1096-987X

    25. [25]

      Srinivasan J, Cheatham T E, Cieplak P. Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices[J]. J Am Chem Soc, 1998,120(37):9401-9409. doi: 10.1021/ja981844+

    26. [26]

      Case D A, Darden T A, Cheatham T E, et al. Amber 12, 2012.

    27. [27]

      Miller B R, McGee T D, Jr , Swails J M. MMPBAS.Py:An Efficient Program for End-State Free Energy Calculations[J]. J Chem Theory Comput, 2012,8(9):3314-3321. doi: 10.1021/ct300418h

    28. [28]

      Cui F, Yang K, Li Y. Investigate the Binding of Catechins to Trypsin Using Docking and Molecular Dynamics Simulation[J]. PloS One, 2015,10(5):5994-5998.

    29. [29]

      Jeong S H, Ryu Y B, Curtis-Long M J. Tyrosinase Inhibitory Polyphenols from Roots of Morus Ihou[J]. J Agric Food Chem, 2009,57(4):1195-1203. doi: 10.1021/jf8033286

    30. [30]

      Munoz E, Avila J G, Alarcon J. Tyrosinase Inhibitors from Calceolaria integrifolia s.l.:Calceolaria talcana Aerial Parts[J]. J Agric Food Chem, 2013,61(18):4336-4343. doi: 10.1021/jf400531h

    31. [31]

      Kier L B, Hall L H. An Electrotopological-State Index for Atoms in Molecules[J]. Pharm Res, 1990,7(8):801-807. doi: 10.1023/A:1015952613760

    32. [32]

      LI Lili, CHEN Bingnian, DENG Yangyang. Inhibitory Effects of Dawson Type Polyoxometalates on Tyrosinase[J]. Chinese J Appl Chem, 2017,34(1):83-89. doi: 10.11944/j.issn.1000-0518.2017.01.160094 

    33. [33]

      Xing R, Zheng A, Wang F. The Inhibitory Mechanism Research of Vanadate-Substituted Polyoxometalates on Tyrosianse[J]. J Mol Sci, 2015,31(5):436-440.  

    34. [34]

      Tse M, Kermasha S, Ismail A. Biocatalysis by Tyrosinase in Organic Solvent Media; A Model System Using Catechin and Vanillin as Substrates[J]. J Mol Catal B-Enzym, 1997,2(4/5):199-213.  

    35. [35]

      Kermasha S, Bao H, Bisakowski B. Biocatalysis of Tyrosinase Using Catechin as Substrate in Selected Organic Solvent Media[J]. J Mol Catal B-Enzym, ,11(4/5/6):929-938.

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    3. [3]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    6. [6]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    7. [7]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    8. [8]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    11. [11]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    12. [12]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    17. [17]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    20. [20]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(1)
  • Abstract views(286)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return