Recovery of Organphosphorus Extractants from Water by Anion Exchange Resin
- Corresponding author: CHEN Ji, jchen@ciac.ac.cn
Citation:
SU Wenrou, CHEN Ji, DENG Yuefeng, YANG Maohua, LIU Chuanying. Recovery of Organphosphorus Extractants from Water by Anion Exchange Resin[J]. Chinese Journal of Applied Chemistry,
;2018, 35(7): 802-811.
doi:
10.11944/j.issn.1000-0518.2018.07.170321
Grandell L, Lehtilä A, Kivinen M. Role of Critical Metals in the Future Markets of Clean Energy Technologies[J]. Renew Energ, 2016,95:53-62. doi: 10.1016/j.renene.2016.03.102
Su W R, Chen J, Jing Y. Aqueous Partition Mechanism of Organophosphorus Extractants in Rare Earths Extraction[J]. Ind Eng Chem Res, 2016,55(30):8424-8431. doi: 10.1021/acs.iecr.6b01709
Zhu X Y, Li B, Yang J. Effective Adsorption and Enhanced Removal of Organophosphorus Pesticides from Aqueous Solution by Zr-based MOFs of UiO-67[J]. Adv Colloid Interface Sci, 2014,7(1):223-231.
Islam M A, Sakkas V, Albanis T A. Application of Statistical Design of Experiment with Desirability Function for the Removal of Organophosphorus Pesticide from Aqueous Solution by Low-cost Material[J]. J Hazard Mater, 2009,170(1):230-238. doi: 10.1016/j.jhazmat.2009.04.106
Chen L, Chen J, Jing Y. Comprehensive Appraisal and Application of Novel Extraction System for Heavy Rare Earth Separation on the Basis of Coordination Equilibrium Effect[J]. Hydrometallurgy, 2016,165:351-357. doi: 10.1016/j.hydromet.2015.12.007
Jing Y, Chen J, Chen L. Extraction Behaviors of Heavy Rare Earths with Organophosphoric Extractants:The Contribution of Extractant Dimer Dissociation, Acid Ionization, and Complexation. A Quantum Chemistry Study[J]. J Phys Chem B, 2017,121(12):2531-2543. doi: 10.1021/acs.jpca.7b01444
Guivarch E, Oturan N, Oturan M A. Removal of Organophosphorus Pesticides from Water by Electrogenerated Fenton's Reagent[J]. Environ Chem Lett, 2003,1(3):165-168. doi: 10.1007/s10311-003-0029-4
Naushad M, Alothman Z, Khan M. Equilibrium, Kinetics and Thermodynamic Studies for the Removal of Organophosphorus Pesticide Using Amberlyst-15 Resin:Quantitative Analysis by Liquid Chromatography-Mass Spectrometry[J]. J Ind Eng Chem, 2014,20(6):4393-4400. doi: 10.1016/j.jiec.2014.02.006
Cycoń M, Żmijowska A, Wójcik M. Biodegradation and Bioremediation Potential of Diazinon-degrading Serratia marcescens to Remove Other Organophosphorus Pesticides from Soils[J]. J Environ Manage, 2013,117:7-16. doi: 10.1016/j.jenvman.2012.12.031
Wei W, Du J J, Li J. Construction of Robust Enzyme Nanocapsules for Effective Organophosphate Decontamination, Detoxification, and Protection[J]. Adv Mater, 2013,25(15):2212-2218. doi: 10.1002/adma.201205138
Ahmad A, Tan L, Shukor S A. Dimethoate and Atrazine Retention from Aqueous Solution by Nanofiltration Membranes[J]. J Hazard Mater, 2008,151(1):71-77. doi: 10.1016/j.jhazmat.2007.05.047
Badawy M I, Ghaly M Y, Gad-Allah T A. Advanced Oxidation Processes for the Removal of Organophosphorus Pesticides from Wastewater[J]. Desalination, 2006,194(1/2/3):166-175.
Tolosa I, Readman J W, Mee L D. Comparison of the Performance of Solid-phase Extraction Techniques in Recovering Organophosphorus and Organochlorine Compounds from Water[J]. J Chromatogr A, 1996,725(1):93-106. doi: 10.1016/0021-9673(95)00874-8
Aksu Z. Determination of the Equilibrium, Kinetic and Thermodynamic Parameters of the Batch Biosorption of Nickel(Ⅱ) Ions onto Chlorella vulgaris[J]. Process Biochem, 2002,38(1):89-99.
Li Y H, Di Z C, Ding J. Adsorption Thermodynamic, Kinetic and Desorption Studies of Pb2+ on Carbon Nanotubes[J]. Water Res, 2005,39(4):605-609. doi: 10.1016/j.watres.2004.11.004
Halsey G D. The Role of Surface Heterogeneity in Adsorption[J]. Adv Catal, 1952,4:259-269.
Erdem E, Çölgeçen G, Donat R. The Removal of Textile Dyes by Diatomite Earth[J]. J Colloid Interface Sci, 2005,282(2):314-319. doi: 10.1016/j.jcis.2004.08.166
Zhu L L, Deng Y F, Zhang J P. Adsorption of Phenol from Water by N-Butylimidazolium Functionalized Strongly Basic Anion Exchange Resin[J]. J Colloid Interface Sci, 2011,364(2):462-468. doi: 10.1016/j.jcis.2011.08.068
Onganer Y, Temur Ç. Adsorption Dynamics of Fe(Ⅲ) from Aqueous Solutions onto Activated Carbon[J]. J Colloid Interface Sci, 1998,205(2):241-244. doi: 10.1006/jcis.1998.5616
Ho Y S, McKay G. Pseudo-second Order Model for Sorption Processes[J]. Process Biochem, 1999,34(5):451-465. doi: 10.1016/S0032-9592(98)00112-5
Basha S, Murthy Z, Jha B. Sorption of Hg(Ⅱ) onto Carica papaya:Experimental Studies and Design of Batch Sorber[J]. Chem Eng J, 2009,147(2):226-234.
Djeribi R, Hamdaoui O. Sorption of Copper(Ⅱ) from Aqueous Solutions by Cedar Sawdust and Crushed Brick[J]. Desalination, 2008,225(1/2/3):95-112.
Boyd G, Adamson A, Myers Jr L. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites.Ⅱ.Kinetics[J]. J Am Chem Soc, 1947,69(11):2836-2848. doi: 10.1021/ja01203a066
Mohan D, Singh K P. Single- and Multi-component Adsorption of Cadmium and Zinc Using Activated Carbon Derived from Bagasse-An Agricultural Waste[J]. Water Res, 2002,36(9):2304-2318. doi: 10.1016/S0043-1354(01)00447-X
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Shanying Chen , Kangning Huo , Ke Qi , Jingyi Li , Shuxin Li , Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Ling Zhang , Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
ρ(P507)=60 mg/L
c(NH4Cl)/(mol ·L-1):a.0;b.0.01;c.0.025;Adsorption conditions:V(P507 aqueous solution)=5 mL; absorbent dose, 0.1 g, ρinitial=53 mg/L, pH=5.04, Temperature=298 K, Agitation speed=210 r/min
Adsorption conditions:V(P507 aqueous solution)=5 mL, absorbent dose, 0.1 g, ρinitial=53 mg/L, pH=5.04;c(Cl- and SO42-)/(mol ·L-1):0, 0.01, 0.02, 0.03, 0.04, 0.05;Temperature=298 K; Agitation speed=210 r/min
Adsorption conditions:V(P507 aqueous solution)=5 mL; absorbent dose, 0.1 g; ρinitial=53 mg/L, pH=5.04, Agitation speed=210 r/min
Adsorption conditions:V(P507 aqueous solution)=5 mL; absorbent dose, 0.1 g; ρinitial =53 mg/L, Temperature=298 K, Agitation speed=210 r/min
Adsorption conditions:V(P507 aqueous solution)=5 mL; absorbent dose, 0.1 g; ρinitial =53 mg/L; pH=5.04;Temperature=298 K; Agitation speed=210 r/min
Adsorption conditions:V(P507 aqueous solution)=5 mL; absorbent dose, 0.1 g; ρinitial=53 mg/L; pH=5.04;contact time:0, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100, 120 min; Temperature=298 K; Agitation speed=210 r/min
Adsorption conditions:V(P507 aqueous solution)=5 mL; absorbent dose, 0.1 g; ρinitial=53 mg/L; pH=5.04;contact time:0, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100, 120 min; Temperature=298 K; Agitation speed=210 r/min
Adsorption conditions:V(P507 aqueous solution)=5 mL; absorbent dose, 0.05 g; ρinitial=55.2 mg/L; pH=5.04;contact time, 60 min.Desorption conditions:V(NaCl)=5 mL; c(NaCl)=0.3 mol/L; contact time:30 min
A.before adsorption; B.after adsorption; C.after 8 cycles
Adsorption conditions:V(P507 aqueous solution)=5 mL; absorbent dose:0.1 g; ρinitial=65 mg/L; pH=5.04;contact time:60 min; Temperature=298 K; Agitation speed=210 r/min