Citation: SU Wenrou, CHEN Ji, DENG Yuefeng, YANG Maohua, LIU Chuanying. Recovery of Organphosphorus Extractants from Water by Anion Exchange Resin[J]. Chinese Journal of Applied Chemistry, ;2018, 35(7): 802-811. doi: 10.11944/j.issn.1000-0518.2018.07.170321 shu

Recovery of Organphosphorus Extractants from Water by Anion Exchange Resin

  • Corresponding author: CHEN Ji, jchen@ciac.ac.cn
  • Received Date: 5 September 2017
    Revised Date: 10 October 2017
    Accepted Date: 9 November 2017

    Fund Project: the National Natural Science Foundation of China 61106017Supported by the National Natural Science Foundation of China(No.61106017)

Figures(11)

  • The adsorption process of anion exchange resin to organphosphorus extractant in water was explored in this work. By comparing the removal of P507(2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester) in water with different anion exchange resins, it is found that D201-OH(macroporous strong basic anion exchange resin) has the strongest ability to remove P507 from water, and the removal rate can reach to 99.24%. Secondly, at pH=1.0, the adsorption of P507 on D201-OH is mainly molecular adsorption and its adsorption isotherm is better fit to the Langmuir model; at pH=5.0, the anion exchange reaction is dominant and its adsorption isotherm is more suitable for the Freundlich model. Furthermore, the adsorption capacity of D201-OH to P507 reaches 99.8% of which in the adsorption equilibrium in 20 min. Kinetic study shows that the pseudo-first-order model(R2 > 0.99) exhibits a better fit to describe the experimental data and the adsorption rate may be controlled mainly by the film diffusion. Moreover, the adsorption capacity of D201-OH remains above 93% after eight cycles of adsorption-desorption. In summary, D201-OH is an excellent adsorbent for organphosphorus extractants with high stability in the repeated cycle. Therefore, it can be used to recover organphosphorus extractant in the practical production process.
  • 加载中
    1. [1]

      Grandell L, Lehtilä A, Kivinen M. Role of Critical Metals in the Future Markets of Clean Energy Technologies[J]. Renew Energ, 2016,95:53-62. doi: 10.1016/j.renene.2016.03.102

    2. [2]

      Su W R, Chen J, Jing Y. Aqueous Partition Mechanism of Organophosphorus Extractants in Rare Earths Extraction[J]. Ind Eng Chem Res, 2016,55(30):8424-8431. doi: 10.1021/acs.iecr.6b01709

    3. [3]

      Zhu X Y, Li B, Yang J. Effective Adsorption and Enhanced Removal of Organophosphorus Pesticides from Aqueous Solution by Zr-based MOFs of UiO-67[J]. Adv Colloid Interface Sci, 2014,7(1):223-231.  

    4. [4]

      Islam M A, Sakkas V, Albanis T A. Application of Statistical Design of Experiment with Desirability Function for the Removal of Organophosphorus Pesticide from Aqueous Solution by Low-cost Material[J]. J Hazard Mater, 2009,170(1):230-238. doi: 10.1016/j.jhazmat.2009.04.106

    5. [5]

      Chen L, Chen J, Jing Y. Comprehensive Appraisal and Application of Novel Extraction System for Heavy Rare Earth Separation on the Basis of Coordination Equilibrium Effect[J]. Hydrometallurgy, 2016,165:351-357. doi: 10.1016/j.hydromet.2015.12.007

    6. [6]

      Jing Y, Chen J, Chen L. Extraction Behaviors of Heavy Rare Earths with Organophosphoric Extractants:The Contribution of Extractant Dimer Dissociation, Acid Ionization, and Complexation. A Quantum Chemistry Study[J]. J Phys Chem B, 2017,121(12):2531-2543. doi: 10.1021/acs.jpca.7b01444

    7. [7]

      Guivarch E, Oturan N, Oturan M A. Removal of Organophosphorus Pesticides from Water by Electrogenerated Fenton's Reagent[J]. Environ Chem Lett, 2003,1(3):165-168. doi: 10.1007/s10311-003-0029-4

    8. [8]

      Naushad M, Alothman Z, Khan M. Equilibrium, Kinetics and Thermodynamic Studies for the Removal of Organophosphorus Pesticide Using Amberlyst-15 Resin:Quantitative Analysis by Liquid Chromatography-Mass Spectrometry[J]. J Ind Eng Chem, 2014,20(6):4393-4400. doi: 10.1016/j.jiec.2014.02.006

    9. [9]

      Cycoń M, Żmijowska A, Wójcik M. Biodegradation and Bioremediation Potential of Diazinon-degrading Serratia marcescens to Remove Other Organophosphorus Pesticides from Soils[J]. J Environ Manage, 2013,117:7-16. doi: 10.1016/j.jenvman.2012.12.031

    10. [10]

      Wei W, Du J J, Li J. Construction of Robust Enzyme Nanocapsules for Effective Organophosphate Decontamination, Detoxification, and Protection[J]. Adv Mater, 2013,25(15):2212-2218. doi: 10.1002/adma.201205138

    11. [11]

      Ahmad A, Tan L, Shukor S A. Dimethoate and Atrazine Retention from Aqueous Solution by Nanofiltration Membranes[J]. J Hazard Mater, 2008,151(1):71-77. doi: 10.1016/j.jhazmat.2007.05.047

    12. [12]

      Badawy M I, Ghaly M Y, Gad-Allah T A. Advanced Oxidation Processes for the Removal of Organophosphorus Pesticides from Wastewater[J]. Desalination, 2006,194(1/2/3):166-175.  

    13. [13]

      Tolosa I, Readman J W, Mee L D. Comparison of the Performance of Solid-phase Extraction Techniques in Recovering Organophosphorus and Organochlorine Compounds from Water[J]. J Chromatogr A, 1996,725(1):93-106. doi: 10.1016/0021-9673(95)00874-8

    14. [14]

      Aksu Z. Determination of the Equilibrium, Kinetic and Thermodynamic Parameters of the Batch Biosorption of Nickel(Ⅱ) Ions onto Chlorella vulgaris[J]. Process Biochem, 2002,38(1):89-99.

    15. [15]

      Li Y H, Di Z C, Ding J. Adsorption Thermodynamic, Kinetic and Desorption Studies of Pb2+ on Carbon Nanotubes[J]. Water Res, 2005,39(4):605-609. doi: 10.1016/j.watres.2004.11.004

    16. [16]

      Halsey G D. The Role of Surface Heterogeneity in Adsorption[J]. Adv Catal, 1952,4:259-269.  

    17. [17]

      Erdem E, Çölgeçen G, Donat R. The Removal of Textile Dyes by Diatomite Earth[J]. J Colloid Interface Sci, 2005,282(2):314-319. doi: 10.1016/j.jcis.2004.08.166

    18. [18]

      Zhu L L, Deng Y F, Zhang J P. Adsorption of Phenol from Water by N-Butylimidazolium Functionalized Strongly Basic Anion Exchange Resin[J]. J Colloid Interface Sci, 2011,364(2):462-468. doi: 10.1016/j.jcis.2011.08.068

    19. [19]

      Onganer Y, Temur Ç. Adsorption Dynamics of Fe(Ⅲ) from Aqueous Solutions onto Activated Carbon[J]. J Colloid Interface Sci, 1998,205(2):241-244. doi: 10.1006/jcis.1998.5616

    20. [20]

      Ho Y S, McKay G. Pseudo-second Order Model for Sorption Processes[J]. Process Biochem, 1999,34(5):451-465. doi: 10.1016/S0032-9592(98)00112-5

    21. [21]

      Basha S, Murthy Z, Jha B. Sorption of Hg(Ⅱ) onto Carica papaya:Experimental Studies and Design of Batch Sorber[J]. Chem Eng J, 2009,147(2):226-234.  

    22. [22]

      Djeribi R, Hamdaoui O. Sorption of Copper(Ⅱ) from Aqueous Solutions by Cedar Sawdust and Crushed Brick[J]. Desalination, 2008,225(1/2/3):95-112.  

    23. [23]

      Boyd G, Adamson A, Myers Jr L. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites.Ⅱ.Kinetics[J]. J Am Chem Soc, 1947,69(11):2836-2848. doi: 10.1021/ja01203a066

    24. [24]

      Mohan D, Singh K P. Single- and Multi-component Adsorption of Cadmium and Zinc Using Activated Carbon Derived from Bagasse-An Agricultural Waste[J]. Water Res, 2002,36(9):2304-2318. doi: 10.1016/S0043-1354(01)00447-X

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    5. [5]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    15. [15]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    16. [16]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    19. [19]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(1)
  • Abstract views(282)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return