Citation: HUANG Gang, ZHANG Hongwei, ZHANG Huanhuan, SHI Tongfei, XU Donghua. Influence of Graphene Oxide on the Rheological Properties of Poly(vinyl alcohol)/Borate Hydrogel[J]. Chinese Journal of Applied Chemistry, ;2018, 35(7): 767-775. doi: 10.11944/j.issn.1000-0518.2018.07.170273 shu

Influence of Graphene Oxide on the Rheological Properties of Poly(vinyl alcohol)/Borate Hydrogel

  • Corresponding author: XU Donghua, dhxu@ciac.ac.cn
  • Received Date: 8 August 2017
    Revised Date: 24 August 2017
    Accepted Date: 22 September 2017

    Fund Project: the National Natural Science Foundation of China 21274152Supported by the National Natural Science Foundation of China(No.21274152)

Figures(8)

  • The influence of graphene oxide(GO) on the linear and nonlinear rheological properties of poly(vinyl alcohol)(PVA)/borate hydrogel was explored in this work. Results of scanning electron microscopy, 11B nuclear magnetic resonance and rheology reveal that elastically active points formed between dispersed GO sheets and PVA chains have enhanced plateau modulus(G0), relaxation time(τ) and zero shear viscosity(η0) of samples when the mass concentration of GO(ρ(GO)) is in the dilute concentration regime. As ρ(GO) is further increased to the semi-dilute concentration regime, part of cross-linkers is occupied by GO aggregation and exists as non-elastically active GO-borate-GO bond, then G0, τ and η0 of samples are decreased with ρ(GO). Under steady shear, the enhancement of viscosity in shear thickening regime always increases with ρ(GO) in different concentration regimes, which is related with the participation of oriented GO sheets to reorganization of the network.
  • 加载中
    1. [1]

      Zohuriaan-Mehr M J, Omidian H, Doroudiani S. Advances in Non-hygienic Applications of Superabsorbent Hydrogel Materials[J]. J Mater Sci, 2010,45(21):5711-5735. doi: 10.1007/s10853-010-4780-1

    2. [2]

      Hoffman A S. Hydrogels for Biomedical Applications[J]. Adv Drug Delivery Rev, 2012,64:18-23. doi: 10.1016/j.addr.2012.09.010

    3. [3]

      Shikinaka K, Koizumi Y, Osada Y. Reinforcement of Hydrogel by Addition of Fiber-like Nanofiller[J]. Polym Adv Technol, 2011,22(8):1212-1215. doi: 10.1002/pat.v22.8

    4. [4]

      Han J Q, Lei T Z, Wu Q L. Facile Preparation of Mouldable Polyvinyl Alcohol-borax Hydrogels Reinforced by Well-dispersed Cellulose Nanoparticles:Physical, Viscoelastic and Mechanical Properties[J]. Cellulose, 2013,20(6):2947-2958. doi: 10.1007/s10570-013-0082-5

    5. [5]

      Wei J G, Chen Y F, Liu H Z. Thermo-responsive and Compression Properties of TEMPO-oxidized Cellulose Nanofiber-modified PNIPam Hydrogels[J]. Carbohydr Polym, 2016,14:7201-207.

    6. [6]

      Koppes A N, Keating K W, McGregor A L. Robust Neurite Extension Following Exogenous Electrical Stimulation Within Single Walled Carbon Nanotube-composite Hydrogels[J]. Acta Biomater, 2016,39:34-43.  

    7. [7]

      Narita T, Indei T. Microrheological Study of Physical Gelation in Living Polymeric Networks[J]. Macromolecules, 2016,49(12):4634-4646. doi: 10.1021/acs.macromol.6b00745

    8. [8]

      Narita T, Mayumi K, Ducouret G. Viscoelastic Properties of Poly(vinyl alcohol) Hydrogels Having Permanent and Transient Cross-links Studied by Microrheology, Classical Rheometry, and Dynamic Light Scattering[J]. Macromolecules, 2013,46(10):4174-4183. doi: 10.1021/ma400600f

    9. [9]

      Angelova L V, Berrie B H, De Ghetaldi K. Partially Hydrolyzed Poly(vinyl acetate)-borax-based Gel-like Materials for Conservation of Art:Characterization and Applications[J]. Stud Conserv, 2015,60(4):227-244. doi: 10.1179/2047058413Y.0000000112

    10. [10]

      Song P A, Xu Z, Guo Q. Bioinspired Strategy to Reinforce PVA with Improved Toughness and Thermal Properties via Hydrogen-bond Self-assembly[J]. ACS Macro Lett, 2013,2(12):1100-1104. doi: 10.1021/mz4005265

    11. [11]

      Manna U, Patil S. Borax Mediated Layer-by-layer Self-assembly of Neutral Poly(vinyl alcohol) and Chitosan[J]. J Phys Chem B, 2009,113(27):9137-9142. doi: 10.1021/jp9025333

    12. [12]

      DeRossi D, Kajiwara K, Osada Y, et al. Polymer Gels[M]. New York:Fundamentals and Biomedical Applications, Plenum Press, 1991.

    13. [13]

      Ahn K H, Osaki K. A Network Model for Predicting the Shear Thickening Behavior of a Poly(vinyl alcohol) Sodium-Borate Aqueous Solution[J]. J Non-Newtonian Fluid Mech, 1994,55(3):215-227. doi: 10.1016/0377-0257(94)80071-5

    14. [14]

      Hyun K, Nam J G, Wilhelm M. Nonlinear Response of Complex Fluids under LAOS(Large Amplitude Oscillatory Shear) Flow[J]. Korea-Australia Rheol J, 2003,15(2):97-105.

    15. [15]

      Huang G, Zhang H, Liu Y. Strain Hardening Behavior of Poly(vinyl alcohol)/Borate Hydrogels[J]. Macromolecules, 2017,50(5):2124-2135. doi: 10.1021/acs.macromol.6b02393

    16. [16]

      Sun S, Wu P. A One-step Strategy for Thermal- and pH-responsive Graphene Oxide Interpenetrating Polymer Hydrogel Networks[J]. J Mater Chem, 2011,21(12):4095-4097. doi: 10.1039/c1jm10276a

    17. [17]

      Xu Y, Wu Q, Sun Y. Three-dimensional Self-assembly of Graphene Oxide and DNA into Multifunctional Hydrogels[J]. ACS Nano, 2010,4(12):7358-7362. doi: 10.1021/nn1027104

    18. [18]

      Huang C, Bai H, Li C. A Graphene Oxide/Hemoglobin Composite Hydrogel for Enzymatic Catalysis in Organic Solvents[J]. Chem Commun, 2011,47(17):4962-4964. doi: 10.1039/c1cc10412h

    19. [19]

      Tan Y Q, Song Y H, Zheng Q. Hydrogen Bonding-driven Rheological Modulation of Chemically Reduced Graphene Oxide/Poly(vinyl alcohol) Suspensions and Its Application in Electrospinning[J]. Nanoscale, 2012,4(22):6997-7005. doi: 10.1039/c2nr32160b

    20. [20]

      Bai H, Li C, Wang X. A pH-sensitive Graphene Oxide Composite Hydrogel[J]. Chem Commun, 2010,46(14):2376-2378. doi: 10.1039/c000051e

    21. [21]

      Kim J E, Lee H S. Oscillatory Shear Induced Gelation of Graphene-Poly(vinyl alcohol) Composite Hydrogels and Rheological Premonitor of Ultra-light Aerogels[J]. Polymer, 2014,55(1):287-294. doi: 10.1016/j.polymer.2013.11.011

    22. [22]

      An Z, Compton O C, Putz K W. Bio-inspired Borate Cross-linking in Ultra-stiff Graphene Oxide Thin Films[J]. Adv Mater, 2011,23(33):3842-3846.

    23. [23]

      Huang Y F, Zhang M Q, Ruan W H. High-water-content Graphene Oxide/Polyvinyl Alcohol Hydrogel with Excellent Mechanical Properties[J]. J Mater Chem A, 2014,2(27):10508-10515. doi: 10.1039/C4TA01464B

    24. [24]

      Park S, Ruoff R S. Chemical Methods for the Production of Graphenes[J]. Nat Nano, 2009,4(4):217-224. doi: 10.1038/nnano.2009.58

    25. [25]

      Lerf A, He H, Forster M. Structure of Graphite Oxide Revisited[J]. J Phys Chem B, 1998,102(23):4477-4482. doi: 10.1021/jp9731821

    26. [26]

      Baravian C, Michot L J, Paineau E. An Effective Geometrical Approach to the Structure of Colloidal Suspensions of Very Anisometric Particles[J]. EPL(Euro Phys Lett), 2010,90(3)36005(p1-p5).  

    27. [27]

      Chen J, Li Y D, Zhang Y. Preparation and Characterization of Graphene Oxide Reinforced PVA Film with Boric Acid as Crosslinker[J]. J Appl Polym Sci, 2015,132(22)42000(p1-p8).

    28. [28]

      Sinton S W. Complexation Chemistry of Sodium Borate with Poly(vinyl-alcohol) and Small Diols. A 11B NMR Study[J]. Macromolecules, 1987,20(10):2430-2441. doi: 10.1021/ma00176a018

    29. [29]

      Rubinstein M, Hcolby P. Polymer Physics[M]. Oxford:Oxford University Press, 2003.

    30. [30]

      Xu D, Hawk L L, Loveless D M. Mechanism of Shear Thickening in Reversibly Cross-linked Supramolecular Polymer Networks[J]. Macromolecules, 2010,43(7):3556-3565. doi: 10.1021/ma100093b

    31. [31]

      Osaki K, Inoue T, Ahn K H. Shear and Normal Stresses of a Poly(vinyl alcohol) Sodium Borate Aqueous Solution at the Start of Shear Flow[J]. J Non-Newtonian Fluid Mech, 1994,54:109-120. doi: 10.1016/0377-0257(94)80017-0

    32. [32]

      Niu R, Gong J, Xu D. Relationship Between Structures and Rheological Properties of Plate-like Particle Suspensions[J]. Colloids Surf A, 2015,470:22-30. doi: 10.1016/j.colsurfa.2015.01.055

    33. [33]

      Yang X, Guo C, Ji L. Liquid Crystalline and Shear-induced Properties of an Aqueous Solution of Graphene Oxide Sheets[J]. Langmuir, 2013,29(25):8103-8107. doi: 10.1021/la401038c

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    8. [8]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    9. [9]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    10. [10]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    18. [18]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    19. [19]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(4)
  • Abstract views(558)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return