Recent Research Progress on Nanopores and Nanochannels Based Electrokinetical Energy Conversion Systems
- Corresponding author: HOU Xu, houx@xmu.edu.cn ‡Contributed equally to this work
Citation:
YANG Xian, MIN Lingli, ZHU Yinglin, CAO Liuxuan, XIE Yanbo, HOU Xu. Recent Research Progress on Nanopores and Nanochannels Based Electrokinetical Energy Conversion Systems[J]. Chinese Journal of Applied Chemistry,
;2018, 35(6): 613-624.
doi:
10.11944/j.issn.1000-0518.2018.06.170385
Lindley D. The Energy Should Always Work Twice[J]. Nature, 2009,458(7235):138-141. doi: 10.1038/458138a
GUO Wei, JIANG Lei. Energy Harvesting with Bio-Inspired Synthetic Nanochannels[J]. Sci China(Chem), 2011(8):1257-1270.
Loeb S, Norman R S. Osmotic Power Plants[J]. Science, 1975,189(4203):654-655. doi: 10.1126/science.189.4203.654
Van Der Heyden F H J, Stein D, Dekker C. Streaming Currents in a Single Nanofluidic Channel[J]. Phys Rev Lett, 2005,95(11):116104-116107. doi: 10.1103/PhysRevLett.95.116104
Daiguji H, Yang P D, Szeri A J. Electrochemomechanical Energy Conversion in Nanofluidic Channels[J]. Nano Lett, 2004,4(12):2315-2321. doi: 10.1021/nl0489945
Sheng Z Z, Liu X, Min L L. Bioinspired Approaches for Medical Devices[J]. Chinese Chem Lett, 2017,28(6):1131-1134. doi: 10.1016/j.cclet.2017.03.033
Catania K. The Shocking Predatory Strike of the Electric Eel[J]. Science, 2014,346(6214):1231-1234. doi: 10.1126/science.1260807
Traeger L L, Sabat G, Barrett-Wilt G A. A Tail of Two Voltages:Proteomic Comparison of the Three Electric Organs of the Electric Eel[J]. Sci Adv, 2017,3e1700523. doi: 10.1126/sciadv.1700523
Hou X. Smart Gating Multi-Scale Pore/Channel-Based Membranes[J]. Adv Mater, 2016,28(33):7049-7064. doi: 10.1002/adma.201600797
Hou X, Guo W, Jiang L. Biomimetic Smart Nanopores and Nanochannels[J]. Chem Soc Rev, 2011,40(5):2385-2401. doi: 10.1039/c0cs00053a
Zaino L P, Contento N M, Branagan S P. Coupled Electrokinetic Transport and Electron Transfer at Annular Nanoband Electrodes Embedded in Cylindrical Nanopores[J]. ChemElectroChem, 2014,1(9):1570-1576. doi: 10.1002/celc.v1.9
Yeh H C, Wang M, Chang C C. Fundamentals and Modeling of Electrokinetic Transport in Nanochannels[J]. Isr J Chem, 2014,54(11/12):1533-1555.
Xie Y B, Wang X, Xue J. Electric Energy Generation in Single Track-etched Nanopores[J]. Appl Phys Lett, 2008,93(16)163116. doi: 10.1063/1.3001590
Jia Z, Wang B, Song S. Blue Energy:Current Technologies for Sustainable Power Generation from Water Salinity Gradient[J]. Renew Sustain Energy Rev, 2014,31:91-100. doi: 10.1016/j.rser.2013.11.049
HOU Xu, JIANG Lei. Recent Studies of Biomimetic Smart Single Nanochannels[J]. Physics, 2011,40(5):304-310.
Jung W, Kim J, Kim S. A Novel Fabrication of 3.6 nm High Graphene Nanochannels for Ultrafast Ion Transport[J]. Adv Mater, 2017,29(17)1605854. doi: 10.1002/adma.v29.17
Ying C F, Zhang Y C, Feng Y X. 3D Nanopore Shape Control by Current-stimulus Dielectric Breakdown[J]. Appl Phys Lett, 2016,109(6)063105. doi: 10.1063/1.4960636
Xiao K, Wen L, Jiang L. Biomimetic Solid-State Nanochannels:From Fundamental Research to Practical Applications[J]. Small, 2016,12(21):2810-2831. doi: 10.1002/smll.201600359
Suk M E, Aluru N R. Ion Transport in Sub-5-nm Graphene Nanopores[J]. J Chem Phys, 2014,140(8)084707. doi: 10.1063/1.4866643
Lv W, Liu S, Li X. Spatial Blockage of Ionic Current for Electrophoretic Translocation of DNA Through a Graphene Nanopore[J]. Electrophoresis, 2014,35(8):1144-1151. doi: 10.1002/elps.v35.8
Qiu W Z, Lv Y, Du Y. Composite Nanofiltration Membranes via the Co-deposition and Cross-linking of Catechol/Polyethylenimine[J]. RSC Adv, 2016,6:34096-341020. doi: 10.1039/C6RA04074H
Zhuang T, Tamm L K. Control of the Conductance of Engineered Protein Nanopores Through Concerted Loop Motions[J]. Angew Chem, 2014,126(23):6007-6012. doi: 10.1002/ange.201400400
Bell N A W, Keyser U F. Nanopores Formed by DNA Origami:A Review[J]. FEBS Lett, 2014,588(19):3564-3570. doi: 10.1016/j.febslet.2014.06.013
Kowalczyk S W, Blosser T R, Dekker C. Biomimetic Nanopores:Learning from and about Nature[J]. Trends Biotechnol, 2011,29(12):607-614. doi: 10.1016/j.tibtech.2011.07.006
Li J, Stein D, Mcmullan C. Ion Beam Sculpting on the Nanoscale[J]. Nature, 2001,412:166-169. doi: 10.1038/35084037
Fox D S, Maguire P, Zhou Y. Sub-5 nm Graphene Nanopore Fabrication by Nitrogen Ion Etching Induced by a Low-energy Electron Beam[J]. Nanotechnology, 2016,27(19)195302. doi: 10.1088/0957-4484/27/19/195302
Goyal G, Lee Y B, Darvish A. Hydrophilic and Size-controlled Graphene Nanopores for Protein Detection[J]. Nanotechnology, 2016,27(49)495301. doi: 10.1088/0957-4484/27/49/495301
Choi S S, Park M J, Yamaguchi T. Fabrication of Nanopore on Electron Beam Induced Membrane for Single Molecule Analysis[J]. ECS Trans, 2016,75(16):281-287. doi: 10.1149/07516.0281ecst
Liebes-Peer Y, Bandalo V, Sökmen Ü. Fabrication of Nanopores in Multi-layered Silicon-based Membranes Using Focused Electron Beam Induced Etching with XeF2 Gas[J]. Microchim Acta, 2016,183(3):987-994. doi: 10.1007/s00604-015-1557-x
Yuan J H, He F Y, And D C S. A Simple Method for Preparation of Through-Hole Porous Anodic Alumina Membrane[J]. Chem Mater, 2004,16(10):1841-1844. doi: 10.1021/cm049971u
Burham N, Hamzah A A, Yunas J. Electrochemically Etched Nanoporous Silicon Membrane for Separation of Biological Molecules in Mixture[J]. J Micromech Microeng, 2017,27(7)075021. doi: 10.1088/1361-6439/aa73c8
Huh D, Mills K L, Zhu X. Tuneable Elastomeric Nanochannels for Nanofluidic Manipulation[J]. Nat Mater, 2007,6(6):424-428. doi: 10.1038/nmat1907
Liu L, Yang C, Zhao K. Ultrashort Single-walled Carbon Nanotubes in a Lipid Bilayer as a New Nanopore Sensor[J]. Nat Commun, 2013,42989. doi: 10.1038/ncomms3989
Branton D, Deamer D W, Marziali A. The Potential and Challenges of Nanopore Sequencing[J]. Nat Biotech, 2008,26(10):1146-1153. doi: 10.1038/nbt.1495
Kang X F, Cheley S, Rice-Ficht A C. A Storable Encapsulated Bilayer Chip Containing a Single Protein Nanopore[J]. J Am Chem Soc, 2007,129(15):4701-4705. doi: 10.1021/ja068654g
Burns J R, Stulz E, Howorka S. Self-Assembled DNA Nanopores that Span Lipid Bilayers[J]. Nano Lett, 2013,13(6):2351-2356. doi: 10.1021/nl304147f
Chen Q, Wang Y F, Deng T. SEM-induced Shrinkage and Site-selective Modification of Single-Crystal Silicon Nanopores[J]. Nanotechnology, 2017,28(30)305301. doi: 10.1088/1361-6528/aa77ad
Zhang B, Zhang A, White H S. The Nanopore Electrode[J]. Anal Chem, 2004,76(21):6229-6238. doi: 10.1021/ac049288r
Apel P. Track Etching Technique in Membrane Technology[J]. Radiat Meas, 2001,34(1):559-566.
Hou X, Dong H, Zhu D. Fabrication of Stable Single Nanochannels with Controllable Ionic Rectification[J]. Small, 2010,6(3):361-365. doi: 10.1002/smll.v6:3
Xia F, Guo W, Mao Y. Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors[J]. J Am Chem Soc, 2008,130(26):8345-8350. doi: 10.1021/ja800266p
Vlassiouk I, Siwy Z S. Nanofluidic Diode[J]. Nano Lett, 2007,7(3):552-556. doi: 10.1021/nl062924b
Cai S L, Zhang L X, Zhang K. A Single Glass Conical Nanopore Channel Modified with 6-Carboxymethyl-chitosan to Study the Binding of Bovine Serum Albumin due to Hydrophobic and Hydrophilic Interactions[J]. Microchim Acta, 2016,183(3):981-986. doi: 10.1007/s00604-015-1527-3
Ali M, Yameen B, Neumann R. Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries[J]. J Am Chem Soc, 2008,130(48):16351-16357. doi: 10.1021/ja8071258
Pérez-Mitta G, Burr L, Tuninetti J S. Noncovalent Functionalization of Solid-state Nanopores via Self-assembly of Amphipols[J]. Nanoscale, 2016,8(3):1470-1478. doi: 10.1039/C5NR08190D
Ali M, Yameen B, Cervera J. Layer-by-layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-state Nanopores:Insights from Theory and Experiment[J]. J Am Chem Soc, 2010,132(24):8338-8348. doi: 10.1021/ja101014y
Hou X, Liu Y, Dong H. A pH-gating Ionic Transport Nanodevice:Asymmetric Chemical Modification of Single Nanochannels[J]. Adv Mater, 2010,22(22):2440-2443. doi: 10.1002/adma.v22:22
Chen Y C, Xie R, Yang M. Gating Characteristics of Thermo-Responsive Membranes with Grafted Linear and Crosslinked Poly(N-isopropylacrylamide) Gates[J]. Chem Eng Technol, 2010,32(4):622-631.
Tero R, Yamashita R, Hashizume H. Nanopore Formation Process in Artificial Cell Membrane Induced by Plasma-generated Reactive Oxygen Species[J]. Arch Biochem Biophys, 2016,605:26-33. doi: 10.1016/j.abb.2016.05.014
Guo W, Xia H, Xia F. Current Rectification in Temperature-Responsive Single Nanopores[J]. Chem Phys Chem, 2010,11(4):859-864. doi: 10.1002/cphc.200900989
Kalman E B, Sudre O, Vlassiouk I. Control of Ionic Transport Through Gated Single Conical Nanopores[J]. Anal Bioanal Chem, 2009,394(2):413-419. doi: 10.1007/s00216-008-2545-3
Siwy Z S. Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry[J]. Adv Funct Mater, 2006,16(6):735-746. doi: 10.1002/(ISSN)1616-3028
Dekker C. Solid-state Nanopores[J]. Nat Nanotechnol, 2007,2(4):209-215. doi: 10.1038/nnano.2007.27
Vlassiouk I, Smirnov S, Siwy Z. Ionic Selectivity of Single Nanochannels[J]. Nano Lett, 2008,8(7):1978-1985. doi: 10.1021/nl800949k
Levine S, Marriott J R, Neale G. Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta-potentials[J]. J Colloid Interface Sci, 1975,52(1):136-149. doi: 10.1016/0021-9797(75)90310-0
Ai Y, Qian S. Direct Numerical Simulation of Electrokinetic Translocation of a Cylindrical Particle Through a Nanopore Using a Poisson Boltzmann Approach[J]. Electrophoresis, 2011,32(9):996-1005. doi: 10.1002/elps.201000503
Yang J, Lu F, Kostiuk L W. Electrokinetic Microchannel Battery by Means of Electrokinetic and Microfluidic Phenomena[J]. J Micromech Microeng, 2003,13(6):963-970. doi: 10.1088/0960-1317/13/6/320
Olthuis W, Schippers B, Eijkel J. Energy from Streaming Current and Potential[J]. Sens Actuators B, 2005,111:385-389.
Fievet P, Sbaï M, Szymczyk A. Determining the ζ-Potential of Plane Membranes from Tangential Streaming Potential Measurements:Effect of the Membrane Body Conductance[J]. J Membr Sci, 2003,226(1):227-236.
Yaroshchuk A, Ribitsch V. Role of Channel Wall Conductance in the Determination of ζ-Potential from Electrokinetic Measurements[J]. Langmuir, 2002,18(6):2036-2038. doi: 10.1021/la015557m
Werner C, Zimmermann R, Kratzmüller T. Streaming Potential and Streaming Current Measurements at Planar Solid/Liquid Interfaces for Simultaneous Determination of Zeta Potential and Surface Conductivity[J]. Colloids Surf A, 2001,192(1/2/3):205-213.
Xuan X, Li D. Analysis of Electrokinetic Flow in Microfluidic Networks[J]. J Micromech Microeng, 2003,14(2):290-298.
Heyden F H J V D, Bonthuis D J, Stein D. Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels[J]. Nano Lett, 2006,6(10):2232-2237. doi: 10.1021/nl061524l
Heyden F H J V D, Bonthuis D J, Stein D. Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels[J]. Nano Lett, 2007,7(4):1022-1025. doi: 10.1021/nl070194h
Osterle J F. Electrokinetic Energy Conversion[J]. J Appl Mech, 1964,31(2):161-164. doi: 10.1115/1.3629580
Burgreen D, Nakache F R. Efficiency of Pumping and Power Generation in Ultrafine Electrokinetic Systems[J]. J Appl Mech, 1965,32(3):675-679. doi: 10.1115/1.3627278
Morrison Jr F A, Osterle J F. Electrokinetic Energy Conversion in Ultrafine Capillaries[J]. J Chem Phys, 1965,43(6):2111-2115. doi: 10.1063/1.1697081
Daiguji H, Oka Y, Adachi T. Theoretical Study on the Efficiency of Nanofluidic Batteries[J]. Electrochem Commun, 2006,8(11):1796-1800. doi: 10.1016/j.elecom.2006.08.003
Lu M C, Satyanarayana S, Karnik R. A Mechanical-electrokinetic Battery Using a Nano-porous Membrane[J]. J Micromech Microeng, 2006,16(4):667-675. doi: 10.1088/0960-1317/16/4/001
Chang C C, Yang R J. Electrokinetic Energy Conversion in Micrometer-length Nanofluidic Channels[J]. Microfluidics Nanofluidics, 2009,9(2/3):225-241.
Wang M, Kang Q. Electrochemomechanical Energy Conversion Efficiency in Silica Nanochannels[J]. Microfluidics Nanofluidics, 2010,9(2/3):181-190.
Chein R, Tsai K, Yeh L. Analysis of Effect of Electrolyte Types on Electrokinetic Energy Conversion in Nanoscale Capillaries[J]. Electrophoresis, 2010,31(3):535-545. doi: 10.1002/elps.v31:3
Xie Y B, Sherwood J D, Shui L. Strong Enhancement of Streaming Current Power by Application of Two Phase Flow[J]. Lab Chip, 2011,11(23):4006-4011. doi: 10.1039/c1lc20423h
Gillespie D. High Energy Conversion Efficiency in Nanofluidic Channels[J]. Nano Lett, 2012,12(3):1410-1416. doi: 10.1021/nl204087f
Chanda S, Sinha S, Das S. Streaming Potential and Electroviscous Effects in Soft Nanochannels:Towards Designing More Efficient Nanofluidic Electrochemomechanical Energy Converters[J]. Soft Matter, 2014,10(38):7558-7568. doi: 10.1039/C4SM01490A
Haldrup S, Catalano J, Hansen M R. High Electrokinetic Energy Conversion Efficiency in Charged Nanoporous Nitrocellulose/Sulfonated Polystyrene Membranes[J]. Nano Lett, 2015,15(2):1158-1165. doi: 10.1021/nl5042287
Bakli C, Chakraborty S. Electrokinetic Energy Conversion in Nanofluidic Channels:Addressing the Loose Ends in Nanodevice Efficiency[J]. Electrophoresis, 2015,36(5):675-681. doi: 10.1002/elps.v36.5
Haldrup S, Catalano J, Hinge M. Tailoring Membrane Nano-Structure and Charge Density for High Electrokinetic Energy Conversion Efficiency[J]. ACS Nano, 2016,10(2):2415-2423. doi: 10.1021/acsnano.5b07229
Arki P, Hecker C, Güth F. Nano-and Microfluidic Channels as Electrokinetic Sensors and Energy Harvesting Devices-Importance of Surface Charge on Solid-Liquid Interfaces[J]. Procedia Eng, 2016,168:1374-1377. doi: 10.1016/j.proeng.2016.11.381
Yan Z, He Y, Tsutsui M. Short Channel Effects on Electrokinetic Energy Conversion in Solid-State Nanopores[J]. Sci Rep, 2017,746661. doi: 10.1038/srep46661
Mei L, Yeh L H, Qian S. Buffer Anions can Enormously Enhance the Electrokinetic Energy Conversion in Nanofluidics with Highly Overlapped Double Layers[J]. Nano Energy, 2016,32:374-381.
Ren Y, Stein D. Slip-enhanced Electrokinetic Energy Conversion in Nanofluidic Channels[J]. Nanotechnology, 2008,19(19)195707. doi: 10.1088/0957-4484/19/19/195707
Pennathur S, Eijkel J C, Van d B A. Energy Conversion in Microsystems:Is There a Role for Micro/nanofluidics[J]. Lab on A Chip, 2007,7(10):1234-1237. doi: 10.1039/b712893m
Davidson C, Xuan X. Electrokinetic Energy Conversion in Slip Nanochannels[J]. J Power Sources, 2008,179(1):297-300. doi: 10.1016/j.jpowsour.2007.12.050
Chang C C, Yang R J. Electrokinetic Energy Conversion Efficiency in Ion-selective Nanopores[J]. Appl Phys Lett, 2011,99(8)083102. doi: 10.1063/1.3625921
Yan Y, Sheng Q, Wang C. Energy Conversion Efficiency of Nanofluidic Batteries:Hydrodynamic Slip and Access Resistance[J]. J Phys Chem C, 2013,117(16):8050-8061. doi: 10.1021/jp400238v
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024