Citation: YANG Xian, MIN Lingli, ZHU Yinglin, CAO Liuxuan, XIE Yanbo, HOU Xu. Recent Research Progress on Nanopores and Nanochannels Based Electrokinetical Energy Conversion Systems[J]. Chinese Journal of Applied Chemistry, ;2018, 35(6): 613-624. doi: 10.11944/j.issn.1000-0518.2018.06.170385 shu

Recent Research Progress on Nanopores and Nanochannels Based Electrokinetical Energy Conversion Systems

  • Corresponding author: HOU Xu, houx@xmu.edu.cn
  • Contributed equally to this work
  • Received Date: 27 October 2017
    Revised Date: 4 December 2017
    Accepted Date: 22 December 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21673197, No.11405143), the Natural Science Foundation of Fujian Province of China(No.2018J06003), the Young Overseas High-level Talents Introduction Plan, the 111 Project(No.B16029), the Fundamental Research Funds for the Central Universities of China(No.20720170050)

Figures(5)

  • The development of renewable clean energy is of great importance for human sustainable development. Nanopores and nanochannels based electrokinetical energy conversion systems provide us new choices for future clean energy resource development. Because these systems can transfer fluidic mechanical energy to electrical energy, they could be applied in the fields such as marine energy, self-driving nano-machines and micro-electrical mechanical systems. The interplay between solid pores and liquid interface is crucial for the energy conversion process inside nanopores and nanochannels. Artificial design, chemical modification and optimization for the interfacial structure of the energy conversion systems are key factors to improve the energy conversion efficiency. With rapid development of nanotechnology and the further study of the physical chemistry of surfaces, we can effectively and precisely prepare nanofluid power generation systems. This review mainly introduced basic concepts and advance progress of nanopores and nanochannels based electrokinetical energy conversion systems. We hope this review will be inspiring for scientists in the area of developing and applying of electrokinetic energy conversion systems, nano-generators, self-actuated nano-machines and wearable devices, etc.
  • 加载中
    1. [1]

      Lindley D. The Energy Should Always Work Twice[J]. Nature, 2009,458(7235):138-141. doi: 10.1038/458138a

    2. [2]

      GUO Wei, JIANG Lei. Energy Harvesting with Bio-Inspired Synthetic Nanochannels[J]. Sci China(Chem), 2011(8):1257-1270.  

    3. [3]

      Loeb S, Norman R S. Osmotic Power Plants[J]. Science, 1975,189(4203):654-655. doi: 10.1126/science.189.4203.654

    4. [4]

      Van Der Heyden F H J, Stein D, Dekker C. Streaming Currents in a Single Nanofluidic Channel[J]. Phys Rev Lett, 2005,95(11):116104-116107. doi: 10.1103/PhysRevLett.95.116104

    5. [5]

      Daiguji H, Yang P D, Szeri A J. Electrochemomechanical Energy Conversion in Nanofluidic Channels[J]. Nano Lett, 2004,4(12):2315-2321. doi: 10.1021/nl0489945

    6. [6]

      Sheng Z Z, Liu X, Min L L. Bioinspired Approaches for Medical Devices[J]. Chinese Chem Lett, 2017,28(6):1131-1134. doi: 10.1016/j.cclet.2017.03.033

    7. [7]

      Catania K. The Shocking Predatory Strike of the Electric Eel[J]. Science, 2014,346(6214):1231-1234. doi: 10.1126/science.1260807

    8. [8]

      Traeger L L, Sabat G, Barrett-Wilt G A. A Tail of Two Voltages:Proteomic Comparison of the Three Electric Organs of the Electric Eel[J]. Sci Adv, 2017,3e1700523. doi: 10.1126/sciadv.1700523

    9. [9]

      Hou X. Smart Gating Multi-Scale Pore/Channel-Based Membranes[J]. Adv Mater, 2016,28(33):7049-7064. doi: 10.1002/adma.201600797

    10. [10]

      Hou X, Guo W, Jiang L. Biomimetic Smart Nanopores and Nanochannels[J]. Chem Soc Rev, 2011,40(5):2385-2401. doi: 10.1039/c0cs00053a

    11. [11]

      Zaino L P, Contento N M, Branagan S P. Coupled Electrokinetic Transport and Electron Transfer at Annular Nanoband Electrodes Embedded in Cylindrical Nanopores[J]. ChemElectroChem, 2014,1(9):1570-1576. doi: 10.1002/celc.v1.9

    12. [12]

      Yeh H C, Wang M, Chang C C. Fundamentals and Modeling of Electrokinetic Transport in Nanochannels[J]. Isr J Chem, 2014,54(11/12):1533-1555.  

    13. [13]

      Xie Y B, Wang X, Xue J. Electric Energy Generation in Single Track-etched Nanopores[J]. Appl Phys Lett, 2008,93(16)163116. doi: 10.1063/1.3001590

    14. [14]

      Jia Z, Wang B, Song S. Blue Energy:Current Technologies for Sustainable Power Generation from Water Salinity Gradient[J]. Renew Sustain Energy Rev, 2014,31:91-100. doi: 10.1016/j.rser.2013.11.049

    15. [15]

      HOU Xu, JIANG Lei. Recent Studies of Biomimetic Smart Single Nanochannels[J]. Physics, 2011,40(5):304-310.  

    16. [16]

      Jung W, Kim J, Kim S. A Novel Fabrication of 3.6 nm High Graphene Nanochannels for Ultrafast Ion Transport[J]. Adv Mater, 2017,29(17)1605854. doi: 10.1002/adma.v29.17

    17. [17]

      Ying C F, Zhang Y C, Feng Y X. 3D Nanopore Shape Control by Current-stimulus Dielectric Breakdown[J]. Appl Phys Lett, 2016,109(6)063105. doi: 10.1063/1.4960636

    18. [18]

      Xiao K, Wen L, Jiang L. Biomimetic Solid-State Nanochannels:From Fundamental Research to Practical Applications[J]. Small, 2016,12(21):2810-2831. doi: 10.1002/smll.201600359

    19. [19]

      Suk M E, Aluru N R. Ion Transport in Sub-5-nm Graphene Nanopores[J]. J Chem Phys, 2014,140(8)084707. doi: 10.1063/1.4866643

    20. [20]

      Lv W, Liu S, Li X. Spatial Blockage of Ionic Current for Electrophoretic Translocation of DNA Through a Graphene Nanopore[J]. Electrophoresis, 2014,35(8):1144-1151. doi: 10.1002/elps.v35.8

    21. [21]

      Qiu W Z, Lv Y, Du Y. Composite Nanofiltration Membranes via the Co-deposition and Cross-linking of Catechol/Polyethylenimine[J]. RSC Adv, 2016,6:34096-341020. doi: 10.1039/C6RA04074H

    22. [22]

      Zhuang T, Tamm L K. Control of the Conductance of Engineered Protein Nanopores Through Concerted Loop Motions[J]. Angew Chem, 2014,126(23):6007-6012. doi: 10.1002/ange.201400400

    23. [23]

      Bell N A W, Keyser U F. Nanopores Formed by DNA Origami:A Review[J]. FEBS Lett, 2014,588(19):3564-3570. doi: 10.1016/j.febslet.2014.06.013

    24. [24]

      Kowalczyk S W, Blosser T R, Dekker C. Biomimetic Nanopores:Learning from and about Nature[J]. Trends Biotechnol, 2011,29(12):607-614. doi: 10.1016/j.tibtech.2011.07.006

    25. [25]

      Li J, Stein D, Mcmullan C. Ion Beam Sculpting on the Nanoscale[J]. Nature, 2001,412:166-169. doi: 10.1038/35084037

    26. [26]

      Fox D S, Maguire P, Zhou Y. Sub-5 nm Graphene Nanopore Fabrication by Nitrogen Ion Etching Induced by a Low-energy Electron Beam[J]. Nanotechnology, 2016,27(19)195302. doi: 10.1088/0957-4484/27/19/195302

    27. [27]

      Goyal G, Lee Y B, Darvish A. Hydrophilic and Size-controlled Graphene Nanopores for Protein Detection[J]. Nanotechnology, 2016,27(49)495301. doi: 10.1088/0957-4484/27/49/495301

    28. [28]

      Choi S S, Park M J, Yamaguchi T. Fabrication of Nanopore on Electron Beam Induced Membrane for Single Molecule Analysis[J]. ECS Trans, 2016,75(16):281-287. doi: 10.1149/07516.0281ecst

    29. [29]

      Liebes-Peer Y, Bandalo V, Sökmen Ü. Fabrication of Nanopores in Multi-layered Silicon-based Membranes Using Focused Electron Beam Induced Etching with XeF2 Gas[J]. Microchim Acta, 2016,183(3):987-994. doi: 10.1007/s00604-015-1557-x

    30. [30]

      Yuan J H, He F Y, And D C S. A Simple Method for Preparation of Through-Hole Porous Anodic Alumina Membrane[J]. Chem Mater, 2004,16(10):1841-1844. doi: 10.1021/cm049971u

    31. [31]

      Burham N, Hamzah A A, Yunas J. Electrochemically Etched Nanoporous Silicon Membrane for Separation of Biological Molecules in Mixture[J]. J Micromech Microeng, 2017,27(7)075021. doi: 10.1088/1361-6439/aa73c8

    32. [32]

      Huh D, Mills K L, Zhu X. Tuneable Elastomeric Nanochannels for Nanofluidic Manipulation[J]. Nat Mater, 2007,6(6):424-428. doi: 10.1038/nmat1907

    33. [33]

      Liu L, Yang C, Zhao K. Ultrashort Single-walled Carbon Nanotubes in a Lipid Bilayer as a New Nanopore Sensor[J]. Nat Commun, 2013,42989. doi: 10.1038/ncomms3989

    34. [34]

      Branton D, Deamer D W, Marziali A. The Potential and Challenges of Nanopore Sequencing[J]. Nat Biotech, 2008,26(10):1146-1153. doi: 10.1038/nbt.1495

    35. [35]

      Kang X F, Cheley S, Rice-Ficht A C. A Storable Encapsulated Bilayer Chip Containing a Single Protein Nanopore[J]. J Am Chem Soc, 2007,129(15):4701-4705. doi: 10.1021/ja068654g

    36. [36]

      Burns J R, Stulz E, Howorka S. Self-Assembled DNA Nanopores that Span Lipid Bilayers[J]. Nano Lett, 2013,13(6):2351-2356. doi: 10.1021/nl304147f

    37. [37]

      Chen Q, Wang Y F, Deng T. SEM-induced Shrinkage and Site-selective Modification of Single-Crystal Silicon Nanopores[J]. Nanotechnology, 2017,28(30)305301. doi: 10.1088/1361-6528/aa77ad

    38. [38]

      Zhang B, Zhang A, White H S. The Nanopore Electrode[J]. Anal Chem, 2004,76(21):6229-6238. doi: 10.1021/ac049288r

    39. [39]

      Apel P. Track Etching Technique in Membrane Technology[J]. Radiat Meas, 2001,34(1):559-566.  

    40. [40]

      Hou X, Dong H, Zhu D. Fabrication of Stable Single Nanochannels with Controllable Ionic Rectification[J]. Small, 2010,6(3):361-365. doi: 10.1002/smll.v6:3

    41. [41]

      Xia F, Guo W, Mao Y. Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors[J]. J Am Chem Soc, 2008,130(26):8345-8350. doi: 10.1021/ja800266p

    42. [42]

      Vlassiouk I, Siwy Z S. Nanofluidic Diode[J]. Nano Lett, 2007,7(3):552-556. doi: 10.1021/nl062924b

    43. [43]

      Cai S L, Zhang L X, Zhang K. A Single Glass Conical Nanopore Channel Modified with 6-Carboxymethyl-chitosan to Study the Binding of Bovine Serum Albumin due to Hydrophobic and Hydrophilic Interactions[J]. Microchim Acta, 2016,183(3):981-986. doi: 10.1007/s00604-015-1527-3

    44. [44]

      Ali M, Yameen B, Neumann R. Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries[J]. J Am Chem Soc, 2008,130(48):16351-16357. doi: 10.1021/ja8071258

    45. [45]

      Pérez-Mitta G, Burr L, Tuninetti J S. Noncovalent Functionalization of Solid-state Nanopores via Self-assembly of Amphipols[J]. Nanoscale, 2016,8(3):1470-1478. doi: 10.1039/C5NR08190D

    46. [46]

      Ali M, Yameen B, Cervera J. Layer-by-layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-state Nanopores:Insights from Theory and Experiment[J]. J Am Chem Soc, 2010,132(24):8338-8348. doi: 10.1021/ja101014y

    47. [47]

      Hou X, Liu Y, Dong H. A pH-gating Ionic Transport Nanodevice:Asymmetric Chemical Modification of Single Nanochannels[J]. Adv Mater, 2010,22(22):2440-2443. doi: 10.1002/adma.v22:22

    48. [48]

      Chen Y C, Xie R, Yang M. Gating Characteristics of Thermo-Responsive Membranes with Grafted Linear and Crosslinked Poly(N-isopropylacrylamide) Gates[J]. Chem Eng Technol, 2010,32(4):622-631.  

    49. [49]

      Tero R, Yamashita R, Hashizume H. Nanopore Formation Process in Artificial Cell Membrane Induced by Plasma-generated Reactive Oxygen Species[J]. Arch Biochem Biophys, 2016,605:26-33. doi: 10.1016/j.abb.2016.05.014

    50. [50]

      Guo W, Xia H, Xia F. Current Rectification in Temperature-Responsive Single Nanopores[J]. Chem Phys Chem, 2010,11(4):859-864. doi: 10.1002/cphc.200900989

    51. [51]

      Kalman E B, Sudre O, Vlassiouk I. Control of Ionic Transport Through Gated Single Conical Nanopores[J]. Anal Bioanal Chem, 2009,394(2):413-419. doi: 10.1007/s00216-008-2545-3

    52. [52]

      Siwy Z S. Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry[J]. Adv Funct Mater, 2006,16(6):735-746. doi: 10.1002/(ISSN)1616-3028

    53. [53]

      Dekker C. Solid-state Nanopores[J]. Nat Nanotechnol, 2007,2(4):209-215. doi: 10.1038/nnano.2007.27

    54. [54]

      Vlassiouk I, Smirnov S, Siwy Z. Ionic Selectivity of Single Nanochannels[J]. Nano Lett, 2008,8(7):1978-1985. doi: 10.1021/nl800949k

    55. [55]

      Levine S, Marriott J R, Neale G. Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta-potentials[J]. J Colloid Interface Sci, 1975,52(1):136-149. doi: 10.1016/0021-9797(75)90310-0

    56. [56]

      Ai Y, Qian S. Direct Numerical Simulation of Electrokinetic Translocation of a Cylindrical Particle Through a Nanopore Using a Poisson Boltzmann Approach[J]. Electrophoresis, 2011,32(9):996-1005. doi: 10.1002/elps.201000503

    57. [57]

      Yang J, Lu F, Kostiuk L W. Electrokinetic Microchannel Battery by Means of Electrokinetic and Microfluidic Phenomena[J]. J Micromech Microeng, 2003,13(6):963-970. doi: 10.1088/0960-1317/13/6/320

    58. [58]

      Olthuis W, Schippers B, Eijkel J. Energy from Streaming Current and Potential[J]. Sens Actuators B, 2005,111:385-389.  

    59. [59]

      Fievet P, Sbaï M, Szymczyk A. Determining the ζ-Potential of Plane Membranes from Tangential Streaming Potential Measurements:Effect of the Membrane Body Conductance[J]. J Membr Sci, 2003,226(1):227-236.  

    60. [60]

      Yaroshchuk A, Ribitsch V. Role of Channel Wall Conductance in the Determination of ζ-Potential from Electrokinetic Measurements[J]. Langmuir, 2002,18(6):2036-2038. doi: 10.1021/la015557m

    61. [61]

      Werner C, Zimmermann R, Kratzmüller T. Streaming Potential and Streaming Current Measurements at Planar Solid/Liquid Interfaces for Simultaneous Determination of Zeta Potential and Surface Conductivity[J]. Colloids Surf A, 2001,192(1/2/3):205-213.  

    62. [62]

      Xuan X, Li D. Analysis of Electrokinetic Flow in Microfluidic Networks[J]. J Micromech Microeng, 2003,14(2):290-298.  

    63. [63]

      Heyden F H J V D, Bonthuis D J, Stein D. Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels[J]. Nano Lett, 2006,6(10):2232-2237. doi: 10.1021/nl061524l

    64. [64]

      Heyden F H J V D, Bonthuis D J, Stein D. Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels[J]. Nano Lett, 2007,7(4):1022-1025. doi: 10.1021/nl070194h

    65. [65]

      Osterle J F. Electrokinetic Energy Conversion[J]. J Appl Mech, 1964,31(2):161-164. doi: 10.1115/1.3629580

    66. [66]

      Burgreen D, Nakache F R. Efficiency of Pumping and Power Generation in Ultrafine Electrokinetic Systems[J]. J Appl Mech, 1965,32(3):675-679. doi: 10.1115/1.3627278

    67. [67]

      Morrison Jr F A, Osterle J F. Electrokinetic Energy Conversion in Ultrafine Capillaries[J]. J Chem Phys, 1965,43(6):2111-2115. doi: 10.1063/1.1697081

    68. [68]

      Daiguji H, Oka Y, Adachi T. Theoretical Study on the Efficiency of Nanofluidic Batteries[J]. Electrochem Commun, 2006,8(11):1796-1800. doi: 10.1016/j.elecom.2006.08.003

    69. [69]

      Lu M C, Satyanarayana S, Karnik R. A Mechanical-electrokinetic Battery Using a Nano-porous Membrane[J]. J Micromech Microeng, 2006,16(4):667-675. doi: 10.1088/0960-1317/16/4/001

    70. [70]

      Chang C C, Yang R J. Electrokinetic Energy Conversion in Micrometer-length Nanofluidic Channels[J]. Microfluidics Nanofluidics, 2009,9(2/3):225-241.  

    71. [71]

      Wang M, Kang Q. Electrochemomechanical Energy Conversion Efficiency in Silica Nanochannels[J]. Microfluidics Nanofluidics, 2010,9(2/3):181-190.  

    72. [72]

      Chein R, Tsai K, Yeh L. Analysis of Effect of Electrolyte Types on Electrokinetic Energy Conversion in Nanoscale Capillaries[J]. Electrophoresis, 2010,31(3):535-545. doi: 10.1002/elps.v31:3

    73. [73]

      Xie Y B, Sherwood J D, Shui L. Strong Enhancement of Streaming Current Power by Application of Two Phase Flow[J]. Lab Chip, 2011,11(23):4006-4011. doi: 10.1039/c1lc20423h

    74. [74]

      Gillespie D. High Energy Conversion Efficiency in Nanofluidic Channels[J]. Nano Lett, 2012,12(3):1410-1416. doi: 10.1021/nl204087f

    75. [75]

      Chanda S, Sinha S, Das S. Streaming Potential and Electroviscous Effects in Soft Nanochannels:Towards Designing More Efficient Nanofluidic Electrochemomechanical Energy Converters[J]. Soft Matter, 2014,10(38):7558-7568. doi: 10.1039/C4SM01490A

    76. [76]

      Haldrup S, Catalano J, Hansen M R. High Electrokinetic Energy Conversion Efficiency in Charged Nanoporous Nitrocellulose/Sulfonated Polystyrene Membranes[J]. Nano Lett, 2015,15(2):1158-1165. doi: 10.1021/nl5042287

    77. [77]

      Bakli C, Chakraborty S. Electrokinetic Energy Conversion in Nanofluidic Channels:Addressing the Loose Ends in Nanodevice Efficiency[J]. Electrophoresis, 2015,36(5):675-681. doi: 10.1002/elps.v36.5

    78. [78]

      Haldrup S, Catalano J, Hinge M. Tailoring Membrane Nano-Structure and Charge Density for High Electrokinetic Energy Conversion Efficiency[J]. ACS Nano, 2016,10(2):2415-2423. doi: 10.1021/acsnano.5b07229

    79. [79]

      Arki P, Hecker C, Güth F. Nano-and Microfluidic Channels as Electrokinetic Sensors and Energy Harvesting Devices-Importance of Surface Charge on Solid-Liquid Interfaces[J]. Procedia Eng, 2016,168:1374-1377. doi: 10.1016/j.proeng.2016.11.381

    80. [80]

      Yan Z, He Y, Tsutsui M. Short Channel Effects on Electrokinetic Energy Conversion in Solid-State Nanopores[J]. Sci Rep, 2017,746661. doi: 10.1038/srep46661

    81. [81]

      Mei L, Yeh L H, Qian S. Buffer Anions can Enormously Enhance the Electrokinetic Energy Conversion in Nanofluidics with Highly Overlapped Double Layers[J]. Nano Energy, 2016,32:374-381.  

    82. [82]

      Ren Y, Stein D. Slip-enhanced Electrokinetic Energy Conversion in Nanofluidic Channels[J]. Nanotechnology, 2008,19(19)195707. doi: 10.1088/0957-4484/19/19/195707

    83. [83]

      Pennathur S, Eijkel J C, Van d B A. Energy Conversion in Microsystems:Is There a Role for Micro/nanofluidics[J]. Lab on A Chip, 2007,7(10):1234-1237. doi: 10.1039/b712893m

    84. [84]

      Davidson C, Xuan X. Electrokinetic Energy Conversion in Slip Nanochannels[J]. J Power Sources, 2008,179(1):297-300. doi: 10.1016/j.jpowsour.2007.12.050

    85. [85]

      Chang C C, Yang R J. Electrokinetic Energy Conversion Efficiency in Ion-selective Nanopores[J]. Appl Phys Lett, 2011,99(8)083102. doi: 10.1063/1.3625921

    86. [86]

      Yan Y, Sheng Q, Wang C. Energy Conversion Efficiency of Nanofluidic Batteries:Hydrodynamic Slip and Access Resistance[J]. J Phys Chem C, 2013,117(16):8050-8061. doi: 10.1021/jp400238v

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    3. [3]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    4. [4]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    5. [5]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    11. [11]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    12. [12]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    15. [15]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    16. [16]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    17. [17]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    20. [20]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

Metrics
  • PDF Downloads(45)
  • Abstract views(1863)
  • HTML views(582)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return