Citation: YAN Pengfei, WU Liang, YAO Jingfen, LIU Haidong, GUO Anru. Determination of Total Fluoride in Chemical Milling Etching Solution for Titanium Alloys by in-situ Hydrolysis-Lanthanum Nitrate Potentiometric Titration Method[J]. Chinese Journal of Applied Chemistry, ;2018, 35(6): 729-734. doi: 10.11944/j.issn.1000-0518.2018.06.170368 shu

Determination of Total Fluoride in Chemical Milling Etching Solution for Titanium Alloys by in-situ Hydrolysis-Lanthanum Nitrate Potentiometric Titration Method

  • Corresponding author: GUO Anru, 200521025@163.com
  • Received Date: 16 October 2017
    Revised Date: 5 January 2018
    Accepted Date: 5 February 2018

Figures(4)

  • A new method for determination of total fluoride in chemical milling etching solution for titanium alloys based on in-situ hydrolysis of fluoride-titanium complex and on potentiometric titration with La(NO3)3 was developed. In hexamethylenetetramine(HMTA) buffer solution, the fluoride-titanium complex was hydrolyzed to release free fluoride ions. A fluoride ion-selective electrode(F-ISE) was used as the indicator electrode. Various parameters affecting the test(i.e., pH values of the solution, the dosage of HMTA solution and the concentration of titanium ion) were tested and optimized. It is shown that the test results are not interfered by the concentration of Ti(Ⅳ) in the range of 0~20 g/L, the relative standard deviation(RSDs, n=6) of the method ranges from 0.27% to 0.62% and the recovery by standard addition method is in the range of 99.5%~101.1%. The mechanism of hydrolysis of fluoride-titanium complex was discussed. The main form of fluoride presented in etching solution is TiF62-. Appropriate acidity is essential to the hydrolysis reaction. HMTA as a pH buffer provides a constant pH circumstance, while La(NO3)3 as the fluoride scavenger reduces the concentration of free fluoride and promotes the hydrolysis reaction dramatically. Accompanied by the titration reaction, the fluoride-titanium complex is hydrolyzed completely.
  • 加载中
    1. [1]

      ZHAO Yonggang, ZHANG Chungang, WANG Hui. Research and Application of Chemical Milling Processing for Titanium Alloy[J]. Surf Tech, 2009,38(6):83-86.  

    2. [2]

      Sun J, Guo Y B. Characteristics of 3D Chip Morphology and Properties in End Milling Titanium Alloy Ti-6Al-4V[J]. Int J Adv Manuf Tech, 2008,38(13):1-9.

    3. [3]

      QI Yunlian, DENG Ju, HONG Quan. Hydrogen Absorption and Effect Occured During Chemical Milling of Ti and Ti Alloy[J]. Aeronaut Manuf Tech, 2000,2:30-32.  

    4. [4]

      Eriksson T. Determination of Hydrofluoric Acid in Strong Acid Solutions such as Stainless Picking Baths with a Lanthanum Fluoride Electrode and a Permaplex Membrane Electrode[J]. Anal Chim Acta, 1973,65:417-424. doi: 10.1016/S0003-2670(01)82508-3

    5. [5]

      Henβge A, Acker J. Chemical Analysis of Acidic Silicon Etch SolutionsⅠ.Titrimetric Determination of HNO3, HF, and H2SiF6[J]. Talanta, 2007,73(2):220-226. doi: 10.1016/j.talanta.2007.02.004

    6. [6]

      Croomes E F, Mcnutt R C. Determination of Hydrofluoric Acid in Inhibited Red Fuming Nitric Acid[J]. Analyst, 1968,93(1112):729-731. doi: 10.1039/an9689300729

    7. [7]

      Lingane J J. A Study of the Lanthanum Fluoride Membrane Electrode for End Point Detection in Titrations of Fluoride with Thorium, Lanthanum, and Calcium[J]. Anal Chem, 1967,39(8):881-887. doi: 10.1021/ac60252a030

    8. [8]

      Abramovic B F, Gaál F F, Cvetkovi S D. Titrimetric Determination of Fluoride in Some Pharmaceutical Products Used for Fluoridation[J]. Talanta, 1992,39(5):511-515. doi: 10.1016/0039-9140(92)80173-B

    9. [9]

      Weinreich W, Acker J, Gr ber I. Determination of Total Fluoride in HF/HNO3/H2SiF6 Etch Solutions by New Potentiometric Titration Methods[J]. Talanta, 2007,71(5):1901-1905. doi: 10.1016/j.talanta.2006.08.022

    10. [10]

      QIAO Yonglian, SHA Chunpeng, ZHANG Min. EDTA Titrimetric Determination of Fluorion in Chemical Milling Solution and Acid Pickling Solution for Titanium Alloys[J]. Phys Test Chem Anal:Part B:Chem Anal, 2016,52(6):652-655. doi: 10.11973/lhjy-hx201606008

    11. [11]

      Lori E G, Benjamin D Y, Matt L. Solution-Grown Zinc Oxide Nanowires[J]. Inorg Chem, 2006,45(19):7535-7543. doi: 10.1021/ic0601900

    12. [12]

      Xie S F, Zheng B J, Qin K. Synthesis of Layered Protonated Titanate Hierarchical Microspheres with Extremely Large Surface Area for Selective Adsorption of Organic Dyes[J]. Cryst Eng Comm, 2012,14(22):7715-7720. doi: 10.1039/c2ce25797a

    13. [13]

      Han X G, Zheng B J, Ouyang J J. Control of Anatase TiO2 Nanocrystals with a Series of High-Energy Crystal Facets via a Fluorine-Free Strategy[J]. Chem Asian J, 2012,7(11):2538-2542. doi: 10.1002/asia.201200474

    14. [14]

      Li J M, Yu Y X, Chen Q W. Controllable Synthesis of TiO2 Single Crystals with Tunable Shapes Using Ammonium-Exchanged Titanate Nanowires as Precursors[J]. Cryst Growth Des, 2010,10(5):2111-2115. doi: 10.1021/cg9012087

    15. [15]

      Serre C, Corbière T, Lorentz C. Hydrothermal Synthesis of Nanoporous Metalofluorophosphates.1.Precursor Solutions of Titanium Fluoride and Fluorophosphates in Water, a 19F and 31P NMR Study[J]. Chem Mater, 2002,14(12):4939-4947. doi: 10.1021/cm021182u

    16. [16]

      Gutiérrez-Tauste D, Domènech X, Domingo C. Hexafluorotitanate Salts Containing Organic Cations:Use as a Reaction Medium and Precursor to the Synthesis of Titanium Dioxide[J]. Chem Commun, 2007,44:4659-4661.

  • 加载中
    1. [1]

      Juan Hou Chen Zhou Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023

    2. [2]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    3. [3]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    4. [4]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    5. [5]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    8. [8]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    12. [12]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    13. [13]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

    14. [14]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    15. [15]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    18. [18]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    19. [19]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    20. [20]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

Metrics
  • PDF Downloads(0)
  • Abstract views(1537)
  • HTML views(899)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return