Citation: ZHANG Zhuying, CHEN Jing, YU Jialei, ZHAO Qian, CAO Chuanhao, SHEN Jiali, SHI Dongjian. Preparation and Properties of Polydopamine and Alginate Porous Complex Scaffolds[J]. Chinese Journal of Applied Chemistry, ;2018, 35(6): 665-673. doi: 10.11944/j.issn.1000-0518.2018.06.170173 shu

Preparation and Properties of Polydopamine and Alginate Porous Complex Scaffolds

  • Corresponding author: SHI Dongjian, djshi@jiangnan.edu.cn
  • Received Date: 25 May 2017
    Revised Date: 9 August 2017
    Accepted Date: 7 September 2017

    Fund Project: Supported by the Jiangsu Province College Students Innovation and Entrepreneurship Training Program(No.201610295019Y)the Jiangsu Province College Students Innovation and Entrepreneurship Training Program 201610295019Y

Figures(8)

  • Alginate(Alg) is widely used in the field of tissue engineering because of its safe, non-toxic and biodegradable properties. Inspired by mussel adhesive protein, dopamine(DA) has excellent adhesion property and can self-oxidize to polydopamine(PDA) in weak basic buffer solution. Alg/PDA porous scaffolds were prepared by freeze-dry of Alg and PDA mixture. The results show that Alg/PDA porous scaffolds have relatively homogeneous internal structure. By changing the mass concentration of Alg, the pore size of the Alg/PDA complex scaffolds can be limited to 60~120 μm, and the porosity of the scaffolds can be controlled in the range of 80%~88% which is appropriate for the growth of bond cells. The biocompatibility results indicate that the scaffolds show low cytotoxicity.
  • 加载中
    1. [1]

      WANG Yingjun, DU Chang, ZHAO Naru. Biomimetic Artificial Bone Repair Materials:A Review[J]. South China Univ Technol (Nat Sci Ed), 2012,40(10):51-58. doi: 10.3969/j.issn.1000-565X.2012.10.007

    2. [2]

      Murphy C M, Schindeler A, Gleeson J P. A Collagen-Hydroxyapatite Scaffold Allows for Binding and Co-delivery of Recombinant Bone Morphogenetic Proteins and Bisphosphonates[J]. Acta Biomater, 2014,10(5):2250-2258. doi: 10.1016/j.actbio.2014.01.016

    3. [3]

      Yao X D, Hu Y, Cao B. Effects of Surface Molecular Chirality on Adhesion and Differentiation of Stem Cells[J]. Biomaterials, 2013,34(36):9001-9009. doi: 10.1016/j.biomaterials.2013.08.013

    4. [4]

      Wang X, Ma J, Feng Q. Skeletal Repair in Rabbits with Calcium Phosphate Cements Incorporated Phosphorylated Chitin[J]. Biomaterials, 2002,23(23):4591-4600. doi: 10.1016/S0142-9612(02)00205-3

    5. [5]

      Xu W, Wang L, Ling Y. Enhancement of Compressive Strength and Cytocompatibility Using Apatite Coated Hexagonal Mesoporous Silica/Poly(Lactic Acid-Glycolic Acid) Microsphere Scaffolds for Bone Tissue Engineering[J]. RSC Adv, 2014,4(26):13495-13501. doi: 10.1039/c4ra00626g

    6. [6]

      Pawar S N, Edgar K J. Alginate Derivatization:A Review of Chemistry, Properties and Applications[J]. Biomaterials, 2012,33(11):3279-3305. doi: 10.1016/j.biomaterials.2012.01.007

    7. [7]

      Lee Y J, Shin D S, Kwon O W. Preparation of Atacticpoly(Vinyl Alcohol)/Sodium Alginate Blend Nanowebs by Electrospinning[J]. J Appl Polym Sci, 2007,106(2):1337-1342. doi: 10.1002/(ISSN)1097-4628

    8. [8]

      Ci S, Huynh T H, Louie L. Molecular Mass Distribution of Sodium Alginate by High-Performance Size-Exclusion Chromatography[J]. J Chromatogr A, 1999,864(2):199-210. doi: 10.1016/S0021-9673(99)01029-8

    9. [9]

      Braccini I, Pérez S. Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins:The Egg-Box Model Revisited[J]. Biomacromolecules, 2001,2(4):1089-1096. doi: 10.1021/bm010008g

    10. [10]

      Sharma S, Sanpui P, Chattopadhyay A. Fabrication of Antibacterial Silver Nanoparticle-Sodium Alginate Chitosan Composite Films[J]. RSC Adv, 2012,2(13):5837-5843. doi: 10.1039/c2ra00006g

    11. [11]

      Wang W, Wang X, Feng Q L. Sodium Alginate as a Scaffold Material for Hepatic Tissue Engineering[J]. J Bioact Compat Polym, 2003,18(4):249-257. doi: 10.1177/088391103036044

    12. [12]

      Florczyk S J, Kim D, Wood D. Influence of Processing Parameters on Pore Structure of 3D Porous Chitosan Alginate Polyelectrolyte Complex Scaffolds[J]. J Biomed Mater Res A, 2011,98(4):614-620.  

    13. [13]

      Sun J, Xiao W, Tang Y. Biomimetic Interpenetrating Polymer Network Hydrogels Based on Methacrylated Alginate and Collagen for 3D Pre-Osteoblast Spreading and Osteogenic Differentiation[J]. Soft Matter, 2012,8(8):2398-2404. doi: 10.1039/c2sm06869a

    14. [14]

      Balakrishnan B, Joshi N, Jayakrishnan A. Self-Crosslinked Oxidized Alginate/Gelatin Hydrogel as Injectable, Adhesive Biomimetic Scaffolds for Cartilage Regeneration[J]. Acta Biomater, 2014,10(8):3650-3663. doi: 10.1016/j.actbio.2014.04.031

    15. [15]

      Waite J H. Surface Chemistry:Mussel Power[J]. Nat Mater, 2008,7(1):8-9. doi: 10.1038/nmat2087

    16. [16]

      Lee H, Dellatore S M, Miller W M. Mussel-Inspired Surface Chemistry for Multifunctional Coatings[J]. Science, 2007,318(5849):426-430. doi: 10.1126/science.1147241

    17. [17]

      Ju K, Lee Y, Lee S. Bioinspired Polymerization of Dopamine to Generate Melanin-Like Nanoparticles Having an Excellent Free-Radical-Scavenging Property[J]. Biomacromolecules, 2011,12(3):625-632. doi: 10.1021/bm101281b

    18. [18]

      Cui G, Dan N, Dan W. Preparation and Characterization of Novel Dopamine-based Bioadhesive Hydrogels[J]. Chem J Chinese Univ, 2017,38(2):318-325.  

    19. [19]

      Zhang S, Xu K, Darabi M A. Mussel-Inspired Alginate Gel Promoting the Osteogenic Differentiation of Mesenchymal Stem Cells and Anti-Infection[J]. Mater Sci Eng C, 2016,69:496-504. doi: 10.1016/j.msec.2016.06.044

    20. [20]

      Scognamiglio F, Travan A, Borgogna M. Enhanced Bioadhesivity of Dopamine-functionalized Polysaccharidic Membranes for General Surgery Applications[J]. Acta Biomater, 2016,44:232-242. doi: 10.1016/j.actbio.2016.08.017

    21. [21]

      SHI Guixin, WANG Shenguo, BEI Jianzhong. Preparation of Porous Cell Scaffolds of Poly(L-lactic acid)and Poly(L-lactic-co-glycolic acid) and the Measurement of Their Porosities[J]. Funct Polym, 2001,14(1):7-11.  

    22. [22]

      Zhang R, Ma P X. Poly(α-Hydroxyl Acids)/Hydroxyapatite Porous Composites for Bone-Tissue Engineering.Ⅰ.Preparation and Morphology[J]. J Biomed Mater Res, 1999,44(4):446-455. doi: 10.1002/(ISSN)1097-4636

    23. [23]

      Kokubo T, Takadama H. How Useful is SBF in Predicting in vivo Bone Bioactivity?[J]. Biomaterials, 2006,27(15):2907-2915. doi: 10.1016/j.biomaterials.2006.01.017

    24. [24]

      Ratner, B. D. Biomaterials Science:An Introduction to Materials in Medicine[M]. Amsterdam:Elsevier Academic Press, 2004:218.

    25. [25]

      Chatterjea A, Der Stok J V, Danoux C. Inflammatory Response and Bone Healing Capacity of Two Porous Calcium Phosphate Ceramics in Critical Size Cortical Bone Defects[J]. J Biomed Mater Res A, 2014,102(5):1399-1407. doi: 10.1002/jbm.a.34815

    26. [26]

      Chai F, Abdelkarim M, Laurent T. Poly-Cyclodextrin Functionalized Porous Bioceramics for Local Chemotherapy and Anticancer Bone Reconstruction[J]. J Biomed Mater Res B, 2014,102(6):1130-1139. doi: 10.1002/jbm.b.v102.6

    27. [27]

      LIU Xinhui, ZHANG Xiqing, LIU Jinlian. Celluarcompatibilty of the Nano-Hap/Collagen and Bone Marrow Stem Cell[J]. Chinese J Pediatr Surg, 2005,26(4):203-206.  

  • 加载中
    1. [1]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    5. [5]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    6. [6]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    13. [13]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    14. [14]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    15. [15]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    16. [16]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    17. [17]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    18. [18]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    19. [19]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    20. [20]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

Metrics
  • PDF Downloads(5)
  • Abstract views(1151)
  • HTML views(328)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return